
1 The Harmonic Oscillator
The typical harmonic oscillator is the mass-on-a-spring system, which is described by
the following equation: ��������	�����
��
��� (1)

where � is the mass, 
 is the spring constant, and � is the coefficient of the “viscous”
damping term, which represents a force proportional to the speed of the mass. (And � ,
of course, represent the displacement of the mass from its equilibrium point.

1.1 The Free Harmonic Oscillator
We can have a simpler case, by setting the damping term to zero. Then we have the
even simpler equation: �������
������ (2)

The solution to this case is well-known, and it is sinusoidal motion:�
������������������� (3)

where � � �! 
#"$� and � and � are constants to be determined by the initial con-
ditions. The constant � � is called the natural frequency of the system since it is the
frequency it will osciallte when it is left “alone”.

1.2 The Damped Harmonic Oscillator
Going back to Equation 1, let us find the solution for the damped case. First, let us
divide through by � to obtain: ������%"$�&��'��
#"(�
�
�)�

Now, by substituting �+*� for 
#"$� and ,.- for ��"(� we obtain (the reason for the
coefficient of 2 will be clear soon):��'� ,/- ��'�0� *� ���1� (4)

Substituting a solution of the form �
�)2/354 , we get the equation:6 * 2 354 � ,.- 672 354 �0� *� 2 384 �1� (5)

from which we find: 69�&: -<;)= - * :>� *� (6)

This simply means that our solution is:

�?���92 3A@54 �CB'2 3EDE46(FG�H: - � = - * :I� *� (7)6 * �H: - : = - * :I� *�
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This is always the form of the solution, but the quality varies with the relative
magnitudes of - and � � . (We are only interested in cases where -KJ � .) We can
distingush three cases, which we will look at:

1.2.1 The Case -ML � �
In this case, the inside of the radical is negative. Thus, after a little work, we can find
that:

�
���ON%2�PRQ 4 �S�T��UV�WN%�X���RN$Y (8)� N � = � *� : - *
Once again, the constants � N and � N are to be determined by the initial conditions.

The motion is still sinusoidal, but its envelope is an exponential. The angular frequency
of the motion is now modified, and is � N instead of �	� . Note that � N L �	� . This is
usually referred to as the underdamped case.

1.2.2 The Case -MJ ���
Here, the inside of the radical is positive, so we have two distinct, real roots. The form
of the solution then becomes:

���1�ZFS2 PR[ @84 ��� * 2 PX[ D\4 (9)] F<� - � = - * :I� *�] * � - : = - * :I� *�
The constants � F and � * are determined by the initial conditions. So, there is

no osciallation at all, and the motion dies off exponentially. This is known as the
overdamped case.

1.2.3 The Case - �1� �
In this case, the radical is zero, and we have two identical roots. The form of the
solution then becomes: �
�^U_�O`���BZ`E�\Y\2 PRQ 4 (10)

This is the case where motion dies off the quickest, and there is no oscillation. The
constants � ` and B ` are determined by the initial conditions. This is the critically
damped case.

2 The Forced Harmonic Oscillator
When the harmonic oscillator is forced to motion by a sinusoidal driving force, we
have the following equation of motion:��������	��'��
��
�)ab�������c� (11)
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Here, a is the maximum force, and � is the driving frequency. Dividing through
by � again, we obtain: ��M� ,.- ��d�e� *� ���^U_a<"(�?Y�f7�S���g�c� (12)

where the definitions are as before.
We are really interested in the steady-state solution, since we know that the ho-

mogenous solutions die off (given there is damping). The easier way of going about
this is using a complex exponential rather than a cosine for the force term, and keep
in mind that the real part of the solution has physical significance. So, our complex
equation is: �� ` � ,.- �� ` �e� *� � ` �hUia<"$�jYWf%2$kml 4 (13)

A particular solution can be found by using a solution of the form � ` �n�92 kml 4 .
Substituting, we find: :o� * ��� ,/p � - �C�e� *� �)�)a<"$� (14)

which yields �)� a<"(�� *� :I� * � ,(p � - (15)

Thus the solution is: � ` � Uia<"$�jYWf�2 kql 4� *� :I� * � ,(p � - (16)

And of course, the “real” solution is:�
�Kr9s%�R`St (17)

2.1 Power Dissipation Spectrum
Obviously, the damped harmonic oscillator oscillates with the driving frequency. The
amplitude of oscillation is a constant that depends on the driving frequency. Thus, the
total energy content of the oscillator is fixed. However, energy is being dissipated by
the damping term, which is in turn being supplied by the driving force. The question
is, what is the average power dissipation per time, and how does its spectrum change
with the driving frequency? We can find the answer as follows. Power is just the force
multiplied by the velocity, and the average power is1:u �wv, f%r9s$a)fTU p �x�9Yzy$tO�)r9s7ady{f p �x�|t (18)

Thus: u � v, f7r'} U_a~*("$�jY�f p �� *� :>� * � ,(p � -o� (19)

After some manipulation, and taking the real part, we find:u � a~*� � - f � - *��x*UV� *� :I� * Y * � � - * � * (20)

1See the appendix for what this means.
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The interesting part about Equation 20 is that the second fraction is of the form��*$"gU_��*9�K��*7Y . Thus, the maxiumum value of that fraction is one, and the minimum
value is zero. The maxiumum occurs when ����� � . So we can state that:uZ���\� � a~*� � - (21)

Another interesting and often referenced quantity the the “full width at half-maximum”
of the power spectrum. In other words, we want to find the two driving frequencies
where the power is at one-half its maximum value, and we want to find the difference
of the two angular frequencies.

Our equation is then: u � u ���A� " , (22)

Just by inspection, we can figure out that this happens if and only if:UV� *� :>� * Y * � � - * � * (23)

which means � *� :>� * � ;Z,/- � (24)

and finally leads to the quadratic equation:� * ;�,.- �b:>� *� ��� (25)

This gives us a total of four solutions:

�cFG� = - * �e� *� : -� * � = - * �e� *� � -�W�<�h: = - * �e� *� : -���9�h: = - * �e� *� � -
However, of the four solutions, ��� and �	� are negative. So, the really interesting

solutions are � F and � * . The full-width at half-maximum (FWHM) is thus:�����<� �1� * :I� F � ,/- (26)

So, the FWHM of the power spectrum is exactly 2z, which is also ��"$� in terms of
the original variables. Note that the half-power points are not symmetric around �c� .

Another quantity of interest is the so-called “quality factor” � . There a few differ-
ent definitions, but in our case, the definition that is easier to use is:

� ���W�7�/���V�A�7�T����� ��������<� (27)

Substituting our findings, we find that:

� � ���,/- ��� 
��� (28)
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2.2 Power Dissipation With No Damping

u � a *� � - f � - * � *UV� *� :I� * Y * � � - * � *
Looking back at Equation 20 (which is repeated above for convenience) let us try

to see what happens when ��� - ��� , i.e., there is no damping. We can distinguish
two cases. The first case is when ����1��� . In this case,

u ��� . This makes sense, since
then oscillation proceeds with constant amplitude, there is no dissipation (no friction
term), hence there is no power input.

The second case is when �H���W� . In this case, you can see by inspection that
u

diverges! You can not talk about average power. The reason is, when there is no damp-
ing, the oscillation amplitude grows with time, and average power keeps increasing
without bound. At the same time, the FWHM is zero.

3 Appendix: Calculating Power
Suppose we have a physical quantity that is time dependent, and is the product of other
two, time dependent quantities. Let us call it

u UV�\Y , and the two other quantities �dU_�\Y
and B U_�\Y . Then our equation is: u UV�\Yc�)�dUV�\Y\B U_�\Y (29)

Let us further assume that �'UV�\Y and B U_�\Y vary sinusoidally in time:

�'UV�\Y¡� ���S�T��UV�c�X���£¢cY (30)B
UV�\Y¡� BC�S�T��UV�c�X���£¤{Y
Then, we have: u U_�\Yc���9BC�S�T��UV�c�����£¢�Yg�S�T��U¥�c�¦��� ¤ Y (31)

Using trigonometric identities, we can write this as:u U_�\Yc� v, �9BC�S�T��U§� ¢ :e�£¤+Y¦� v, �9BC�S�T��U , �c�X��� ¢ ���£¤+Y (32)

The interesting quantity is the average power (averaged over many periods), and
since the second term is oscillatory and averages to zero, we get:u � v, �S�T��Ui�£¢I:0� ¤ Y (33)

Now, this is all fine. But, sometimes the quantities �'UV�\Y and B UV�\Y are not calculated
directly, but in complex form such that:

�dU_�\Y¡� r9s$� ` UV�\Y�t (34)B U_�\Y¡� r9s$B ` UV�\Y�t
What can not be done is to say that:
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u UV�\Yx�)r9s7�O`%U_�\YEBZ`7UV�\Y¨t�U_© � � ��ª#« Y (35)

since the real-part operation will not distribute over the product.
To correspond to the actual �dU_�\Y and B
UV�\Y , � ` UV�\Y and B ` U_�\Y must be of the form:

�9`7UV�\Y¬� �<2 kml 4V­ k¯®(° (36)BO`7UV�\Y¬� Bd2 kml 4V­ k¯®(±
How can we obtain the average real power without taking the real parts, multiply-

ing, and averaging? One answer is the following:u � v, r9s7�9`7U_�\YEB y` U_�\Y¨tO� v, r9s7� y` U_�\YEBZ`%U_�\Y¨t (37)

Let us verify that this indeed gives the correct answer. Plugging in the values, we
get:

u � v, r9s7�92$kql 4V­ k²®(°�B'2 P kql 4 P k¯®(±ctu � v, r9s7�9Bd2 k_³¯®(° P ®(±µ´ tu � v, �<B��S���¦Ui�£¢b:0� ¤ Y (38)

So, this approach gives the same result as Equation 33. Thus, we have our simple
rule:

If �dUV�\YG�^r9s7�9`7U_�\Y¨t and B
UV�\Y¶�hr9s$BO`7U_�\Y¨t , both of which vary sinusoidally with
the same frequency, then we have:u � �dUV�\Y\B U_�\Yx�nv, r9s7� ` U_�\YEB y` U_�\Y¨t (39)
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