1 Writing Applets

An applet is an application which is intended to be embedded inside another
application (usually a web browser) rather than being executed on its own. The
ability to write applets that will be executed within a web page can perhaps be
singled out as the most important aspect of the Java platform.

Almost everything that we have learned so far about graphical user interface
programming and custom graphics applies just as well to applets. However,
there are a few differences between programs that are intended to run stand-
alone and programs that are intended to run as applets.

2 The Applet Class

The Applet class (java.applet.Applet) is derived from java.awt.Panel. The
exact class hierarchy is below:

java.lang.0Object
I

+--java.awt.Component

+--java.awt.Container

+--java.awt.Panel

I
+--java.applet.Applet

Any applet must be a subclass of Applet. In other words, in order to write
an applet that can be executed within a web page, you must write a class which
extends java.applet.Applet.

The differences between a stand-alone application and an applet are as fol-
lows:

An applet should not have a constructor.

An applet should not have a main() method.

An applet should perform initialization in the init () method.

An applet should free any resources in the destroy () method.

3 Detalils of the Applet Class

The methods from the Applet class taken from the Java documentation, related
to applet running;:

public void init()

Called by the browser or applet viewer to inform this
applet that it has been loaded into the system. It
is always called before the first time that the start
method is called.

public

public

public

A subclass of Applet should override this method if
it has initialization to perform. For example, an
applet with threads would use the init method to
create the threads and the destroy method to kill
them.

The implementation of this method provided by the
Applet class does nothing.

void destroy()

Called by the browser or applet viewer to inform this
applet that it is being reclaimed and that it should
destroy any resources that it has allocated. The stop
method will always be called before destroy.

A subclass of Applet should override this method if

it has any operation that it wants to perform before
it is destroyed. For example, an applet with threads
would use the init method to create the threads and

the destroy method to kill them.

The implementation of this method provided by the
Applet class does nothing.

void start()

Called by the browser or applet viewer to inform this
applet that it should start its execution. It is
called after the init method and each time the applet
is revisited in a Web page.

A subclass of Applet should override this method if
it has any operation that it wants to perform each
time the Web page containing it is visited. For
example, an applet with animation might want to use
the start method to resume animation, and the stop
method to suspend the animation.

The implementation of this method provided by the
Applet class does mnothing.

void stop()

Called by the browser or applet viewer to inform this
applet that it should stop its execution. It is
called when the Web page that contains this applet
has been replaced by another page, and also just
before the applet is to be destroyed.

A subclass of Applet should override this method if
it has any operation that it wants to perform each
time the Web page containing it is no longer

visible. For example, an applet with animation might
want to use the start method to resume animation, and
the stop method to suspend the animation.

The implementation of this method provided by the
Applet class does nothing.

Note that all these four methods need to return after performing their func-
tion - none of them can be treated as the main() method of a stand-alone
application. To have an execution thread independent of any user events, one
must use Java Threads.

4 A Very Simple Applet Example

import java.awt.;
public class HelloWorldApplet extends java.applet.Applet {
private Label label;

public void init() {
label = new Label("HELLO, WORLD!");
add(label);

5 An Introtuction to Threads

This is the last painful thing we will have to learn about in this course. But,
we have to do this, since it is crucial in a lot of applications, and applets.

You all probably know what a process or task is in the context of computers
and operating systems. A computer can run multiple processes seemingly all at
the same time. For example, it moves your mouse, processes user input, and
browses the internet concurrently. This is possible by processes, each program
runs in a separate memory area as a separate process. A thread is very similar,
different only in that the multiple processes all operate on the same memory
area. In other words, threads are used for doing more than one job concurrently
in a single program.

You have already seen examples of threads, without realizing it. For instance,
the execution starting at the main() method of an application is a thread. But,
all event handling methods are called by other system threads. So, in effect,
any AWT program is a multithreaded program.

5.1 How to Create Threads

The class Java provides for writing multi-threaded programs is Thread. There
are two ways of writing multi-threaded programs: One is to extend Thread,
the other is to implement the Runnable interface, and have a Thread member
variable within the class to handle the execution. The second is the more useful,
yet harder method, so we will see how to do the job with the first method first.

The Thread class has two very important methods. One is the public void
start () method, which causes the thread to start execution. The second is
the public void run() method, which is where the execution starts (in a new
thread) when start () is called. So, in order to get any useful functionality, you
must extend the Thread class, and override the run() method with a method
that contains the code you want executed concurrently with other parts of the
program.

5.2 A Simple Thread Example

Here is a simple thread example. What it does is print a line on System.out
every second.

public class Tick extends Thread {
public void run() {
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Ignored
}

System.out.println("Tick!");

Here is another class, which prints to standard output every five seconds:

public class Tock extends Thread {
public void run() {
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Ignored
}

System.out.println("Tock!!!");

And here is the main class that will execute both.

public class Main extends Object {

public static void main (String args([]) {
new Tick().start();
new Tock() .start();

Type in all three classes, and execute Main. Watch the output.

6 More about Threads

Now that we have seen how to create a thread using the easy method, which is
to extend the Thread class, and override the run() method. This time, we will
see how to do this the harder — but more useful — way.

The second way to create a thread is to make a class implement the Runnable
interface. This is a very simple interface — there is only one method that you
need to implement, and that method is public void run().

Implementing the Runnable interface means that the object has a run()
method, and therefore can be executed by a Thread. (Note that, if you call the
run() method of this object by yourself, it will execute, but it will execute in
the calling thread, not in a new thread.)

If we modify the Tick object from the last handout to implement Runnable
rather than extending Thread, here is what we get:

public class Tick extends Object implements Runnable {
public void run() {
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Ignored
}

System.out.println("Tick!");

Now, if you try to recompile the Main class from last time, it will not compile,
saying that Tick is missing the start () method. It is exactly right, since we
do not inherit the start () method from Thread any more. So, how can we get
this Runnable object to run? The answer is, by constructing a Thread that will
execute it. The class Thread has a constructor which does exactly that:

public Thread(Runnable obj)

This constructs a thread, which, when the start() method is called, will
execute the run() method of obj in a newly created thread. If we let the code
do the talking, here is the modified Main class that will execute it:

public class Main extends Object {

public static void main (String args([]) {
new Thread(new Tick()).start();
new Tock().start();

We can rewrite that to be more understandable as follows:

public class Main extends Object {

public static void main (String args[]) {
Tick tick = new Tick();
Thread thread = new Thread(tick);
thread.start();

Tock tock = new Tock();
tock.start();
}

This, although perfectly correct, is not what is often done when one wants to
create a Runnable object. What és done, is to make the Runnable object carry
its own Thread, as a private member variable, and also implement a suitable
start () method, so that it functions just as if it had extended Thread. Once
again, an example is the best explanation, so here is what Tick looks like using

this approach:

public class Tick extends Object implements Runnable {

private Thread runner;

public void start() {
if (runner == null) {
runner = new Thread(this);

¥

runner.start();

}

public void run() {
while (true) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
// Ignored

X

System.out.println("Tick!");

The new thing is the start () method. The first if constructs a new thread
if one is not already created (we do not want to create a new thread if one
already exists). It is given this as an argument (which is Runnable) so that
it will execute the run() method of this object when start()ed. Then, we do
exactly that, start () the thread.

7 The War of the Threads

Here, we will write a simple application that will simulate bank accounts. We
will have several clerks operating on the accounts, moving money from one
account to another. Then, we will see if “conservation of money” holds or not.

public class Account extends Object {

private int balance;

public int getBalance() {
return balance;

}

public void setBalance(int balance) {
this.balance = balance;

}

public Account() {
balance = 1000;
}

public Account(int balance) {
this.balance = balance;

}

public void credit(int amount) {
balance += amount;

}
public boolean debit(int amount) {

if (balance >= amount) {
balance —-= amount;
return true;

} else {
return false;

public class Bank extends Object implements Runnable{

private Account[] accounts;
private Clerk[] clerks;
private Thread runner;

/** Creates new Bank */

public Bank(int numAccounts, int numClerks) {
accounts = new Account[numAccounts];
clerks = new Clerk[numClerks];

for (int i=0; i<numAccounts; i++) {
accounts[i] = new Account(1000);

}

for (int i=0; i<numClerks; i++) {
clerks[i] = new Clerk(this);

public int getNumAccounts() {
return accounts.length;

}
public Account getAccount(int i) {
return accounts[i];

}

public int getTotalMoney() {
int total = 0;

for (int i=0; i<accounts.length; i++) {
total += accounts[i].getBalance();
}
return total;
public void start() {

if (runner == null) {
runner = new Thread(this);

runner.start();

public void run() {

for (int i=0; i<clerks.length; i++) {
clerks[i].start();
}

System.out.println("Total money in the bank:
+ getTotalMoney());

try {
Thread.sleep(10000) ;

} catch (InterruptedException e) {
// Ignored

}

for (int i=0; i<clerks.length; i++) {
clerks[i].stop();
}

try {
Thread.sleep(1000) ;

} catch (InterruptedException e) {
// Ignored

}

System.out.println("Total money in the bank: "
+ getTotalMoney());

public static void main(String[]l args) {
Bank theBank = new Bank(20, 400);
theBank.start () ;

import java.util.Random;
public class Clerk extends Object implements Runnable {

private Bank bank;
private Thread runner;
private boolean go = true;

public Clerk(Bank bank) {
this.bank = bank;
}

public void start() {
if (runner == null) {
runner = new Thread(this);

runner.start();

public void stop() {
go = false;

}

public void run() {

try {
Thread.sleep(1000) ;

} catch (InterruptedException e) {
// Ignroed.

}

Random rand = new Random();

while (go) {
int amount = rand.nextInt(50) + 1;
int fromAccountNumber = rand.nextInt(bank.getNumAccounts());
int toAccountNumber = rand.nextInt(bank.getNumAccounts());
Account fromAccount = bank.getAccount(fromAccountNumber);

Account toAccount = bank.getAccount (toAccountNumber) ;

if (fromAccount.debit(amount)) {
toAccount.credit (amount) ;

Here is the sample output from this program:

Total money in the bank: 20000
Total money in the bank: 24684

And another sample:

Total money in the bank: 20000
Total money in the bank: 12315

10

