1 Designing a Java Application

Today instead of learning new things, we will try to learn about putting together
all we have learned to make a simple application. The eventual goal is to
build an application that will simulate molecules moving in a two-dimensional
rectangular box. Today we will see portions that implement the simulation with
bouncing off the walls of the container only.

1.1 Vector2D
package gas;
public class Vector2D extends Object implements Cloneable {

public double x;
public double y;

/*x Creates new Vector2D */
public Vector2D() {
}

public Vector2D(double x, double y) {
this.x = x;
this.y = y;

}

public double dotProduct(Vector2D v) {
return this.x*v.x + this.y*v.y;

}

public double length() {
return Math.sqrt(x*x + y*y);

}

public void multiply(double k) {
x = k*Xx;
¥ = kxy;

1.2 Molecule
package gas;

public class Molecule extends Object {
private double mass;
private Vector2D position;
private Vector2D momentum;

/*x Creates new Molecule */

public Molecule() {
mass = 1.0;
position = new Vector2D(0.0, 0.0);
momentum = new Vector2D(0.0, 0.0);

}

public Molecule(double mass, Vector2D position, Vector2D momentum) {
this.mass = mass;
this.position = position;
this. momentum = momentum;

}

public void advance(double time) {
position.x += momentum.x/mass * time;
position.y += momentum.y/mass * time;

public Vector2D getPosition() {
return position;

}

public Vector2D getMomentum() {
return momentum;

}

public double getMass() {
return mass;

}

1.3 Box
package gas;
public class Box extends Object {

public double width;
public double height;

/*x Creates new Box */
public Box() {
width = 1.0;
height = 1.0;
}

public Box(double width, double height) {
this.width = width;
this.height = height;

}

public Vector2D randomPosition() {
Vector2D v = new Vector2D(Math.random()*width, Math.random()*height);
return v;

}

public Vector2D randomMomentum(double maxMomentum) {
double r = Math.random()*maxMomentum;
double theta = Math.random()*Math.PI*2.0;

Vector2D v = new Vector2D(r*Math.cos(theta), r*Math.sin(theta));

return v;

}

public void reflect(Molecule m) {
Vector2D pos = m.getPosition();
Vector2D mom = m.getMomentum();

if (pos.x < 0.0) {
Pos.X = —pos.X;
mom.X = —mom.X;

}

if (pos.y < 0.0) {
pos.y = -pos.y;

mom.y = -mom.y;
}
if (pos.x > width) {
pos.x = 2%width - pos.x;
mom.X = —mom.X;
}
if (pos.y > height) {
pos.y = 2xheight - pos.y;
mom.y = -mom.y;

1.4 Gas
package gas;

public class Gas extends Object {
private Molecule[] molecules;
private int numMolecules;
private Box box;

/** Creates new Gas */

public Gas() {
molecules = new Molecule[10];
numMolecules = 0;
box = new Box(1.0, 1.0);

}

public Gas(int maxMolecules) {
molecules = new Molecule[maxMolecules];
numMolecules = 0;
box = new Box(1.0, 1.0);

}

public boolean addMolecule(Molecule m) {

if (numMolecules >= molecules.length) {
return false;

} else if (m == null) {
return false;

} else {
molecules[numMolecules] = m;
numMolecules++;
return true;

}

public void advance(double time) {
// Advance every molecule the given amount of time.
// Also handle reflection from box boundaries.

for (int i=0; i<numMolecules; i++) {

molecules[i] .advance(time);
box.reflect(molecules[i]);

}
public Molecule[] getMolecules() {

return molecules;

}
public Box getBox() {

return box;

}

1.5 GasCanvas
package gas;
import java.awt.*;

public class GasCanvas extends java.awt.Canvas {
private Gas gas;

/** Creates new GasCanvas */
public GasCanvas() {
}

public GasCanvas(Gas gas) {
this.gas = gas;

}

public void setGas(Gas gas) {
this.gas = gas;

}

public void paint(Graphics g) {
if (gas != null) {
double width = getWidth();
double height = getHeight();
double scale;

Molecule[] molecules = gas.getMolecules();
Box box = gas.getBox();

scale = width/box.width;

if (height/box.height < scale) {
scale = height/box.height;
}

// Draw the box.
g.drawRect (0, 0, (int) (box.width*scale) - 1,
(int) (box.height*scale) - 1);

for (int i=0; i < molecules.length; i++) {
Vector2D position = molecules[i].getPosition();

g.fillOval((int) (scale*position.x) - 3,
(int) (scale*position.y) - 3, 6, 6);

1.6 GasSimulation
package gas;
public class GasSimulation extends java.awt.Frame {

private GasCanvas gasCanvas;
private Gas gas;
/** Creates new GasSimulation */
public GasSimulation() {
setSize (300, 300);
setLocation (200, 200);

gas = new Gas(100);
Box box = gas.getBox();

for (int i=0; i<100; i++) {
Molecule m = new Molecule(1.0, box.randomPosition(),
box.randomMomentum(3.0));
gas.addMolecule (m) ;

}
gasCanvas = new GasCanvas(gas);
add(gasCanvas) ;

}

public void step() {

gas.advance(0.01);
gasCanvas.repaint () ;

public static void main(Stringl[] args) {
GasSimulation simulation = new GasSimulation();
simulation.setVisible(true);
while (true) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
// Ignored
}

simulation.step();

2 Improving the Java Application

This time, we have an improved version of the gas simulation program from last
time. This time, molecules collide as well! Here’s a listing of the code where
the program has been modified:

2.1 Vector2D

public Vector2D subtract(Vector2D v) |
Vector2D diff;

diff = new Vector2D(this.x - v.x, this.y - v.y);

return diff;

}

public Vector2D add(Vector2D v) {
Vector2D sum;

sum = new Vector2D(this.x + v.x, this.y + v.y);
return sum;

}

public Vector2D multiply(double k) {
Vector2D product;

product = new Vector2D(k*this.x, k*this.y);

return product;

2.2 Molecule

private double radius;

public Molecule() {
mass = 1.0;
radius = 0.01;
position = new Vector2D(0.0, 0.0);
momentum = new Vector2D(0.0, 0.0);

}

public Molecule(double mass, double radius, Vector2D positiomn,
Vector2D momentum) {
this.mass = mass;
this.radius = radius;
this.position = position;
this. momentum = momentum;

}

public double getEnergy() {
return momentum.length() * momentum.length()/(2.0*mass);

}

public double getRadius() {
return radius;

}

public void collide(Molecule other) {
Vector2D r = other.position.subtract(this.position);

if (r.length() <= (this.radius + other.radius)) {
// We are in close proximity.
// Now we need a unit vector in the direction of r.

double 1 = r.length();
r = r.multiply(1.0/1);

// q is the magnitude of the momentum transfer.

double q = 2.0/(this.mass+other.mass)
xother.momentum.multiply (this.mass)
.subtract (this.momentum.multiply(other.mass))
.dotProduct(r) ;

// We are still approaching if and only if this is negative.
if (9 < 0.0) {

this.momentum = this.momentum.add(r);
other.momentum = other.momentum.subtract(r);

2.3 Gas

public void advance(double time) {
// Advance every molecule the given amount of time.
// Also handle reflection from box boundaries.

for (int i=0; i<numMolecules; i++) {
if (molecules[i] !'= null) {

molecules[i] .advance(time);

for (int j=i+1; j<numMolecules; j++) {
molecules[i].collide(molecules[j]);

}

box.reflect (molecules[i]);

}

public double getEnergy() {
double energy=0.0;

for (int i=0; i<numMolecules; i++) {
if (molecules[i] !'= null) {
energy += molecules[i].getEnergy();
}

return energy;

2.4 GasCanvas

public class GasCanvas extends java.awt.Canvas
implements java.awt.event.ComponentListener {

private Image buffer;

public void update(Graphics g) {
paint(g);

}

public void paint(Graphics g) {

if (gas != null) A
double width = getWidth();
double height = getHeight();
double scale;

if (buffer == null) {
buffer = createImage(getWidth(), getHeight());

}
Graphics h = buffer.getGraphics();

Molecule[] molecules = gas.getMolecules();
Box box = gas.getBox();

scale = width/box.width;

if (height/box.height < scale) {
scale = height/box.height;
}

h.setColor(getBackground()) ;

h.fillRect(0, 0, (int)width, (int)height);

h.setColor(getForeground()) ;

// Draw the box.

h.drawRect (0, 0, (int) (box.width*scale) - 1, (int) (box.height*scale) -1);

for (int i=0; i < molecules.length; i++) {
Vector2D position = molecules[i].getPosition();
double radius = molecules[i].getRadius();

h.fill0val((int) (scale*position.x) - (int) (scalex*radius),
(int) (scalex*position.y) - (int) (scale*radius),
(int) (2.0*scale*radius), (int) (2.0*scale*radius));

}

h.dispose();
g.drawImage (buffer, 0, 0, null);

}

public void componentShown(java.awt.event.ComponentEvent evt) {

}

public void componentResized(java.awt.event.ComponentEvent evt) {
buffer = createlmage(getWidth(), getHeight());

}

public void componentHidden(java.awt.event.ComponentEvent evt) {

}

public void componentMoved(java.awt.event.ComponentEvent evt) {

}

2.5 GasSimulation

for (int i=0; i<70; i++) {
Molecule m = new Molecule(1.0, 0.03, box.randomPosition(),
box.randomMomentum(3.0)) ;
gas.addMolecule(m) ;

3

for (int i=0; i<30; i++) {
Molecule m = new Molecule(5.0, 0.05, box.randomPosition(),
box.randomMomentum(3.0)) ;
gas.addMolecule(m);

gasCanvas = new GasCanvas(gas);
add (gasCanvas) ;

public void step() {

gas.advance(0.01);
gasCanvas.repaint () ;

if ((steps++ % 100) == 0) {
System.out.println("Energy = " + gas.getEnergy());
}

public void windowDeactivated(java.awt.event.WindowEvent evt) {

}

public void windowClosed(java.awt.event.WindowEvent evt) {

}

public void windowDeiconified(java.awt.event.WindowEvent evt) {

}

public void windowOpened(java.awt.event.WindowEvent evt) {

}

public void windowIconified(java.awt.event.WindowEvent evt) {

}

public void windowClosing(java.awt.event.WindowEvent evt) {
System.exit (0);

}

public void windowActivated(java.awt.event.WindowEvent evt) {

