1 Handling Input from the Mouse

Next, we will learn how to handle mouse events. Mouse events come in two groups.
The first group is mouse events, which covers the mouse entering a component, exit-
ing a component, a mouse button being pressed, a mouse button being released, and
a mouse button being clicked. The second group is mouse motion events, which cov-
ers the mouse being moved or dragged. The following two sections will cover these
groups.

2 Mouse Events

The relevant interface in this case (which must be implemented by any class which is
interested in handling mouse events) is MouseListener. The event generated (and
gets passed to the interface) is MouseEvent. The method for attaching a listener to a
Component is, not surprisingly, addMouseListener (). Now to the details:

2.1 The MouselListener Interface

This interface contains five methods, explained below:

public void mouseClicked (MouseEvent e)

Invoked when the mouse has been clicked on a component.
public void mousePressed (MouseEvent e)

Invoked when a mouse button has been pressed on a component.
public void mouseReleased (MouseEvent e)

Invoked when a mouse button has been released on a component.
public void mouseEntered (MouseEvent e)

Invoked when the mouse enters a component.
public void mouseExited (MouseEvent e)

Invoked when the mouse exits a component.

2.2 the MouseEvent Class

The MouseEvent class carries information about the mouse event that occured. The
methods provided are as follows:

public int getX()

Returns the horizontal x position of the event relative to the
source component.



public int getY ()

Returns the vertical y position of the event relative to the
source component.

getPoint
public Point getPoint ()

Returns the x,y position of the event relative to the source
component.

Returns:
a Point object containing the x and y coordinates relative
to the source component

public void translatePoint (int x, int vy)

Translates the event’s coordinates to a new position by adding
specified x (horizontal) and y (veritcal) offsets.

Parameters:
x — the horizontal x value to add to the current x
coordinate position
y — the vertical y value to add to the current y
coordinate position

public int getClickCount ()
Return the number of mouse clicks associated with this event.
Returns:
integer value for the number of clicks

public boolean isPopupTrigger ()

Returns whether or not this mouse event is the popup-menu
trigger event for the platform.

public String paramString()

Returns a parameter string identifying this event. This method
is useful for event-logging and for debugging.

Overrides:
paramString in class ComponentEvent
Returns:
a string identifying the event and its attributes



In addition to these methods, it is also possible to figure out which mouse button
a given event is associated with. This is handled through the getModifiers ()
method inherited from InputEvent.

public int getModifiers()

Returns the modifiers flag for this event.
public static final int BUTTON1_MASK

The mouse buttonl modifier constant.
public static final int BUTTON2_MASK

The mouse button2 modifier constant.
public static final int BUTTON3_MASK

The mouse button3 modifier constant.

3 Mouse Motion Events

In order to handle mouse motion events, one has to implement the MouseMotionListener
interface. When a mouse motion event occurs, an object of class MouseEvent is
generated, and passed to the interface. Once again, one registers to listen to mouse mo-
tion events generated by a Component using the addMouseMotionListener ()
method.

Since the event object is the same as the one used for mouse events, we will examine
the interface only:

3.1 The MouseMotionListener Interface

This interface has two methods only, which are as follows:

public void mouseDragged (MouseEvent e)

Invoked when a mouse button is pressed on a component and then
dragged. Mouse drag events will continue to be delivered to the
component where the first originated until the mouse button is
released (regardless of whether the mouse position is within
the bounds of the component).

public void mouseMoved (MouseEvent e)

Invoked when the mouse button has been moved on a component
(with no buttons down) .



4 Handling Input from the Keyboard

Most graphical user interface (GUI) components which are supposed to do keyboard
handling (TextFields, TextAreas) do their jobs automatically — you do not need
to low-level keyboard events in order to make them work. Just like you did not need
the low-level mouse events to make a But t on work.

In this case, the relevant interface is KeyListener. The event that gets passed to
the interface when a keyboard event occurs is KeyEvent. The method to register in
order to receive KeyEvents is addKeyListener. The details are as follows:

4.1 The KeyListener Interface

This interface has three methods, as defined below:

public void keyTyped (KeyEvent e)

Invoked when a key has been typed. This event occurs when a key
press is followed by a key release.

public void keyPressed (KeyEvent e)
Invoked when a key has been pressed.
public void keyReleased (KeyEvent e)

Invoked when a key has been released.

The keyPressed () and keyReleased () methods are called when a key is
pressed or released, respectively. These methods are platform-dependent, and are fired
whether the key being pressed or released produces a printable character or not. For
instance, they will be fired for function keys, the HELP key or any other key on the
keyboard. The keyTyped () method is invoked only when a specific unicode charac-
ter is typed from the keyboard.

4.2 The KeyEvent Class

The KeyEvent class carries information about the key event that just occurred. The
Java documentation gives the following important information:

"Key typed" events are higher-level and generally do not depend on the
platform or keyboard layout. They are generated when a character is
entered, and are the preferred way to find out about character

input. In the simplest case, a key typed event is produced by a single
key press (e.g., 'a’). Often, however, characters are produced by
series of key presses (e.g., ’'shift’ + 'a’), and the mapping from key
pressed events to key typed events may be many-to-one or

many-to-many. Key releases are not usually necessary to generate a key
typed event, but there are some cases where the key typed event is not
generated until a key is released (e.g., entering ASCII sequences via
the Alt-Numpad method in Windows). No key typed events are generated
for keys that don’t generate characters (e.g., action keys, modifier



keys, etc.). The getKeyChar method always returns a valid Unicode
character or CHAR_UNDEFINED. For key pressed and key released events,
the getKeyCode method returns the event’s keyCode. For key typed
events, the getKeyCode method always returns VK_UNDEFINED.

The methods available are as follows:

public void setSource (Object newSource)

Set the source of this KeyEvent. Dispatching this event
subsequent to this operation will send this event to the new
Object.
Parameters:

newSource - the KeyEvent’s new source.

public int getKeyCode ()

Returns the integer key-code associated with the key in this
event.
Returns:
the integer code for an actual key on the keyboard. (For
KEY_TYPED events, keyCode is VK_UNDEFINED.)

public void setKeyCode (int keyCode)

Set the keyCode value to indicate a physical key.
Parameters:
keyCode - an integer corresponding to an actual key
on the keyboard.

public void setKeyChar (char keyChar)

Set the keyChar value to indicate a logical character.
Parameters:
keyChar - a char corresponding to to the
combination of keystrokes that make up this event.

public void setModifiers (int modifiers)

Set the modifiers to indicate additional keys that were held
down (shift, ctrl, alt, meta) defined as part of InputEvent.
NOTE: use of this method is not recommended, because many AWT
implementations do not recognize modifier changes. This is
especially true for KEY_TYPED events where the shift modifier
is changed.
Parameters:

modifiers — an integer combination of the modifier constants.
See Also:

InputEvent



public

public

public

public

public

char getKeyChar ()

Returns the character associated with the key in this
event. For example, the key-typed event for shift + "a" returns
the value for "A".
Returns:
the Unicode character defined for this key event. If
no valid Unicode character exists for this key event,
keyChar is CHAR_UNDEFINED.

static String getKeyText (int keyCode)

Returns a String describing the keyCode, such as "HOME", "F1"
or "A". These strings can be localized by changing the
awt .properties file.
Returns:
string a text description for a
physical key, identified by its keyCode

static String getKeyModifiersText (int modifiers)

Returns a String describing the modifier key(s), such as
"Shift", or "Ctrl+Shift". These strings can be localized by
changing the awt.properties file.
Returns:
string a text description of the combination of modifier
keys that were held down during the event

boolean isActionKey ()

Returns whether or not the key in this event is an "action"
key, as defined in Event. java.
Returns:

boolean value, true if the key is an "action" key
See Also:

Event

String paramString()

Returns a parameter string identifying this event. This method
is useful for event-logging and for debugging.
Overrides:
paramString in class ComponentEvent
Returns:
a string identifying the event and its attributes



5 Making Your Own Components and Graphics

Up to now, we have seen many AWT components Java provides to enable graphical
user interfaces. What we have not seen how to do is to design our own components,
and to be able to draw custom graphics. And, you will all need to use that in your
projects. So, finally, we will start learning about custom graphics now.

In order to draw on, I think it is a simple idea to have a blank component, which
serves no other purpose. Java provides exactly that, a Canvas class, which is a
Component, but it has no function whatsoever. So, we shall first see the details of the
Canvas class.

6 The Canvas Class

The Java documentation provides the following general information about the Canvas
class:

A Canvas component represents a blank rectangular area of the screen
onto which the application can draw or from which the application can
trap input events from the user.

An application must subclass the Canvas class in order to get useful
functionality such as creating a custom component. The paint method
must be overridden in order to perform custom graphics on the canvas.

The Canvas class has only one method worth mentioning, and that is void
paint (Graphics g). Apart from that, it inherits all methods from Component.
The short story of how a canvas gets painted is as follows:

1. The system decides the component needs repainting.
2. It calls the update () method of the component.

3. By default (unless overriden), update () clears the component, and then calls
the paint () method of the component.

4. The paint () method completely re-draws this component.

Boththe update () andpaint () methods receive an argument of type Graphics.
It is the class that is used to actually draw things. It is time we saw the details of this
class.

7 The Graphics Class

The Java documentation provides the following information about the graphics class:

The Graphics <class is the abstract Dbase class for all
graphics contexts that allow an application to draw onto
components that are realized on various devices, as well as
onto off-screen images.



A Graphics object encapsulates state information needed for
the Dbasic rendering operations that Java supports. This
state information includes the following properties:

The Component object on which to draw.

A translation origin for rendering and
clipping coordinates.

The current clip.

The current color.

The current font.

The current logical pixel operation function
(XOR or Paint).

The current XOR alternation color (see
setXORMode (java.awt.Color)) .

Coordinates are infinitely thin and lie Dbetween the pixels
of the output device. Operations that draw the outline of a
figure operate by traversing an infinitely thin path between
pixels with a pixel-sized pen that hangs down and to the
right of the anchor point on the path. Operations that fill
a figure operate by filling the interior of that infinitely
thin path. Operations that render horizontal text render the
ascending portion of character glyphs entirely above the
baseline coordinate.

The graphics pen hangs down and to the right from the path
it traverses. This has the following implications:

If you draw a figure that covers a given rectangle, that
figure occupies one extra row of pixels on the right and
bottom edges as compared to filling a figure that is bounded
by that same rectangle.

If you draw a horizontal line along the same y coordinate as
the baseline of a line of text, that line is drawn entirely
below the text, except for any descenders.

All coordinates that appear as arguments to the methods of
this Graphics object are considered relative to the
translation origin of this Graphics object prior to the
invocation of the method.

All rendering operations modify only pixels which lie within
the area bounded by the current clip, which is specified by
a Shape in user space and is controlled by the program using
the Graphics object. This wuser clip 1s transformed into
device space and combined with the device clip, which is
defined by the visibility of windows and device extents. The
combination of the user clip and device clip defines the
composite clip, which determines the final clipping



region. The wuser clip cannot Dbe modified by the rendering
system to reflect the resulting composite clip. The user
clip can only be changed through the setClip or clipRect
methods. All drawing or writing is done in the current
color, wusing the current paint mode, and in the current
font.

Here is a list of “interesting” methods of the Graphics class:

public abstract void setColor (Color c)

Sets this graphics context’s current color to the specified
color. All subsequent graphics operations using this
graphics context use this specified color.

public abstract void drawlLine (int x1, int yl, int x2, int y2)
Draws a line, using the current color, between the points

(x1, yl) and (x2, vy2) in this graphics context’s coordinate
system.

Parameters:

x1 - the first point’s x coordinate.
yl - the first point’s y coordinate.
x2 — the second point’s x coordinate.
y2 - the second point’s y coordinate.

public void drawRect (int x, int y, int width, int height)

Draws the outline of the specified rectangle. The left and
right edges of the rectangle are at x and x + width. The top
and bottom edges are at y and y + height. The rectangle is
drawn using the graphics context’s current color.

public abstract void drawOval (int x, int y, int width,
int height)

Draws the outline of an oval. The result is a circle or
ellipse that fits within the rectangle specified by the x,
y, width, and height arguments.

The oval covers an area that 1is width + 1 pixels wide and
height + 1 pixels tall..!

public abstract void fillRect (int x, int y, int width,
int height)

Fills the specified rectangle. The left and right edges of
the rectangle are at x and x + width - 1. The top and bottom
edges are at y and y + height - 1. The resulting rectangle



covers an area width pixels wide by height pixels tall. The
rectangle 1s filled wusing the graphics context’s current
color.

public abstract void fillOval (int x, int y, int width,
int height)

Fills an oval bounded by the specified rectangle with the
current color.

8 An Example

As usual, you are probably pretty confused at this point. In order to reduce the amount
of confusion, here is an example:
This is a class which extends Canvas. Type it in.

import java.awt.*;
public class ColorCanvas extends java.awt.Canvas {
public void paint (Graphics g) {
int h = getHeight () ;
int w = getWidth();
int wvalue;
for (int x=0; x<w; x++) {

value = (int) ((float)x / (float) w * 255.0);

g.setColor (new Color (value, value, 0));
g.drawLine (x, 0, x, h - 1);

First, try to figure out what it does. Next, test it in a Frame. You should instantiate
aregular Frame, create a ColorCanvas, and add it to the Frame. When run, resize
the Frame to see what happens. Does anything looking bad happen? Why does it
happen?

9 Exercise

Write a new class which extends Canvas, and displays a 3x3 grid with (almost) equal-
size cells inside it. It should keep working properly as the comonent is resized.

10



