1 Interfaces in Java

Last time we studied inheritance, abstract classes, and polymorphic behaviour. Defin-
ing base classes, and deriving classes from the base class is not the only way of achiev-
ing polymorphic behavior in Java. It is also possible to use interfaces to that effect.

Loosely speaking, an interface is a collection of methods which define a certain
behavior. Interfaces are defined just like classes, but the keyword interface is
used instead of the keyword class. The methods defined within an interface
are always public and abstract. You can specify these, but it considered bad
form. Since all methods of an interface are abstract, a method definition in an
interface can not have a body.

As usual, we shall continue with an example. Let us define an interface, which
will be an interface for moving geometric constructs on the plane. Since the name is
supposed to express some ability or behavior, we will name the interface Movable.

public interface Movable {
void move (double x, double y); // Move relative to current position
void moveTo (Point p); // Move to absolute position

So, this interface defines a group of methods that can be used to move a ge-
ometric construct around in a plane. But, how do we make use of this interface? The
answer is, by implementing it in a class. How do we do that? Let us show it by
example, by implementing the Movable interface in the Circle class.

public class Circle extends Shape implements Movable {
public void move (double x, double y) {
center = new Point (center.getX() + x, center.getY() + Vv);

public void moveTo (Point p) {
center = p;

On the class declaration line, by saying implements Movable we promise
Java that we are going to implement every method in Movable in this class. What
happens if we say that, and do not live up to our promise? The code will not compile
until we implement all the methods, or declare the class abstract.

So why didn’t we just put these methods in Shape? That would not make sense,
because movable things are not limited to Shapes. Points, lines, line segments, and
whatnot, can also be moved.

Also, a class can extend one and only one class, but it can implement many inter-
faces. (You just put the interface names, separated by commas, after the implements
keyword.)

You can declare variables of the interface, just like classes. They can refer to
any object of a class that implements the interface. So, interfaces work as if they
were superclasses of the classes that implemented them. This is as far as we are going
to investigate interfaces right now; this is sufficient for the purposes of learning
about AWT events.



2 AWT Events

The AWT provides facilities for user programs that enable the processing of “event’s.
An event is some activity from the user, and it comes in many forms; keyboard events,
mouse events, mouse movement events, window events, and some more. Each event
produces an object of appropriate type, and passes it to the methods that are registered
to process that sort of event. The “registration” is done by implementing the relevant
interface for the event group in question. As usual, it is best to start right ahead with
an example rather than trying to define things in the abstract. The first problem we will
attack is the one that has been haunting us for a while — closing the Frames that we
open.

3 Window Events

Window events are events related to a window (remember that a Frame is a Window).
The so-called “window events” are events such as the window being opened, attempted
to be closed, being iconified, uniconified and the like. When one of these events hap-
pen, a WindowEvent object is created, and it passed to the relevant method of the
WindowListener interface.

Here are the two steps for processing a window event:

1. Implement the WindowListener interface in a class. This can be the same
class that is going to produce the events.

2. Register that class as a listener for window events of a Window object using the
addWindowListener () method of that object.

Below is a very simple example that implements a frame that can actually be closed:

import java.awt.*;
import java.awt.event.*;

public class ClosableFrame extends Frame implements WindowListener {

public ClosableFrame () {
addWindowListener (this);
setSize (200, 200);
setLocation (300, 200);

public void windowDeactivated (WindowEvent e) {

}

public void windowClosed (WindowEvent e) ({

}

public void windowDeiconified (WindowEvent e) {

}

public void windowOpened (WindowEvent e) {

}

public void windowIconified (WindowEvent e) {

}



public void windowClosing (WindowEvent e) {
System.exit (0);

}

public void windowActivated (WindowEvent e) {

}

public static void main(String[] args) {
ClosableFrame f = new ClosableFrame() ;
f.setVisible (true);

Both the WindowListener interface and the WindowEvent classes reside in
the java.awt .event package. Note that the above class implements the WindowListener
interface, and as such, must implement all seven methods that are defined in that inter-
face. Note that in this implementation, the bodies of six of those methods are empty
since we do not want to do anything special when those events happen. However, in
the case of windowClosing, which is called when the user attempts to close the
window, we have one new statement we have not used before: System.exit (0).
This method, being a static method of System, tells the current program to end the
execution of all threads, and exit. This is exactly what we want in this case. The argu-
ment is an integer which is supposed to inform the system whether the execution was
successful or not — a value of zero indicates success, while anything else indicates an
error.

Now to the details of the interface and event object:

3.1 The WindowListener Interface

The Java documentation gives the following information on the interface WindowListener.

void windowActivated (WindowEvent e)

Invoked when the window is set to be the user’s active window, which
means the window (or one of its subcomponents) will receive keyboard
events.

void windowClosed (WindowEvent e)

Invoked when a window has been closed as the result of calling dispose
on the window.

volid windowClosing (WindowEvent e)

Invoked when the user attempts to close the window from the window’s
system menu.

void windowDeactivated (WindowEvent e)

Invoked when a window is no longer the user’s active window, which



means that keyboard events will no longer be delivered to the window
or its subcomponents.

void windowDeiconified (WindowEvent e)

Invoked when a window is changed from a minimized to a normal state.
vold windowIconified (WindowEvent e)

Invoked when a window is changed from a normal to a minimized state.
volid windowOpened (WindowEvent e)

Invoked the first time a window is made visible.

3.2 The windowEvent Class

An object of type WindowEvent is passed to every method in the WindowListener
interface when a window event occurs. This object carries some information about the
event that occured. The WindowEvent class has two methods:

public Window getWindow ()
Returns the originator of the event.

Returns:
the Window object that originated the event

public String paramString/()

Returns a parameter string identifying this event. This method is
useful for event-logging and for debugging.

Overrides:
paramString in class ComponentEvent

Returns:
a string identifying the event and its attributes

Note that since WindowEvent is four steps down in the derivation ladder, it also
has a few methods it inherits from the parent class tree. These are examined in the
sections below.

4 Action Events

Action events are one of the most important event types in AWT. They are the events
that are fired when a user interface component does what it is designed to do. The
relevant interface in this case is ActionListener. The method for registering
to receive action events is addActionListener (). The classes that have the



addActionListener () method, and thus do generate Act ionEvents are as fol-
lows:

e Button: An event is generated when the button is pressed.

List: Aneventis generated when a list item is double-clicked.

TextField: An eventis generated when Return is pressed.

Now to the details of the interface and event object:

4.1 The ActionListener Interface

This interface is a rather simple one — it has only one method defined, hence you only
need to write one method in order to implement this interface.

public void actionPerformed (ActionEvent e)

Invoked when an action occurs.

4.2 The ActionEvent Class

An object of class ActionEvent is passed to the act ionPerformed () method
when an action event occurs. This object carries information about the event that just
occured. The class has three methods which can be used to obtain information about
the event:

public String getActionCommand ()

Returns the command string associated with this action. This string
allows a "modal" component to specify one of several commands,
depending on its state. For example, a single button might toggle
between "show details" and "hide details". The source object and the
event would be the same in each case, but the command string would
identify the intended action.

Returns:
the string identifying the command for this event

public int getModifiers ()
Returns the modifier keys held down during this action event.

Returns:
the integer sum of the modifier constants

public String paramString()

Returns a parameter string identifying this action event. This method
is useful for event-logging and for debugging.



Overrides:
paramString in class AWTEvent

Returns:
a string identifying the event and its associated command

5 More about Events

The class hierarchy tree of Act ionEvent is as follows:

java.lang.Object

\
+-—-java.util.EventObject

|
+-—-java.awt.AWTEvent

|
+-—-java.awt.event.ActionEvent

And, the class hierarchy tree of WindowEvent is as follows:

java.lang.Object

\
+-—-java.util.EventObject

|
+-—java.awt .AWTEvent

|
+--java.awt .event.ComponentEvent

+-—java.awt.event.WindowEvent

As such, both events inherit important methods from their parent classes. We need
to examine the methods of the parent classes as well to make full use of the event
objects.

5.1 The EventObject Class

All event objects are derived from this class. It has two public methods:
public Object getSource ()

The object on which the Event initially occurred.

Returns:
The object on which the Event initially occurred.

public String toString()
Returns a String representation of this EventObject.
Overrides:

toString in class Object

Returns:
A a String representation of this EventObject.



5.2 The ComponentEvent Class

Once again, two public methods. The get Component () method is particularly use-
ful.

public Component getComponent ()

Returns the originator of the event.

Returns:

the Component object that originated the event

public String paramString()

Returns a parameter string identifying this event. This method is
useful for event-logging and for debugging.

Overrides:
paramString in class AWTEvent

Returns:
a string identifying the event and its attributes



