1 Class Inheritance

One of the most important aspects of object-oriented programming is the ability to
derive classes from existing classes. When this is done, the derived class inherits data
members and methods of the parent class, and can replace (override) methods of the
parent class if there is need.

The way to extend an existing class is to use the extends keyword in the class
declaration line, as follows:

public class Point3D extends Point {
// Class definition goes here.

}

The new class, Point3D, has all the functionality of the class Point externally.
Plus, it has the additional functionality added in its own class definition.

2 Access Modifier Keywords

A data member or method in a class can be declared with an access modifier to de-
termine what classes can have access to that particular data member or method. From
most restricted to unrestricted, these are as follows:

private: Only the methods of this class can access this member.

protected: Only this class and subclasses can access this member.

<no modifier>: Methods of classes in same package can access this member.

public: Any method of any class can access this member.

3 Overriding Methods

It is possible to replace methods defined in a base class in the derived class. To do
this, just define a method with the same signature (name and parameter list) as the base
class. One restriction is that the access modifier for the overriding method must be less
restrictive than that for the overridden method.

4 Calling Methods and Constructors of the Base Class

Within the definition of the derived class, it is possible to call the methods and con-
structors of the base class. This is done by using the keyword super.

It is a good idea to call the superclass constructor in the derived class constructor.
The restriction is that the call must be the first thing in the derived class constructor.
The call looks like:

super (); // Call the base class constructor.

Of course, this is for a constructor that takes no arguments. For other constructors,
you need to supply the proper argument list.

Normally, you can call methods of the base class directly, but if you have overriden
them in the base class, you need to prepend super. in order to refer to the methods
of the parent class rather than the derived class.



S Polymorphism

Polymorphism refers to the ability of taking on different shapes. In the context of
object-oriented programming, it refers to the ability of a base class type variable being
able to refer to objects of any derived classes, and method calls will automatically select
and call the most specific method for that object. This may look difficult conceptually,
but should be clear when we have examples.

6 Exercise

Write a new class, called TestQuestionFrame, whichextends java.awt .Frame.
The constructor should take one argument, St ring question, and when displayed,
should show a frame with the question, and a checkbox group with choices A to E in
them, and a button labeled “OK” in it.

7 Abstract Classes and more on Inheritance

Since this is a very important part of object-oriented programming, it is only fair that
we spend more time on the subject of class derivation and inheritance.

We will do a concrete example, and expand (and modify) our set of geometry
classes. Suppose we wish to write some sort of drawing/graphics program. In it, we
will need various classes for the various geometric shapes that can be drawn. Now, we
need a base class for all the geometric shapes - let us call it Shape. By this, we mean
any kind of geometric shape which has a well defined perimeter and area. From this,
we plan to derive our various geometric shapes, like triangle, rectangle, circle. Our first
attempt at writing this base class will be the following:

public class Shape {

public double getArea () {
return 0.0;

}

public double getPerimeter () {
return 0.0;

}

Now, what did we do here? We defined our base class, and put into it two methods
that return things every geometric shape (that we are interested in, anyway) should
have. Note that both methods are quite dumb, and just return 0.0. This is because this
is an abstract class, and does not refer to any real geometric object, and therefore there
is no way of calculating these things.

Now it is time for us to derive our geometric shapes from this. Let us start with a
rectangle (actually, a special sort of rectangle, one that has sides parallel to the x and y
axes). Here is our new Rectangle class (I assume we have the usual Point class):

public class Rectangle extends Shape {



private Point topLeftCorner;
private double width;
private double height;

public Rectangle () {
topLleftCorner = new Point (0.0, 0.0);
width = 1.0;
height = 1.0;

public Rectangle (Point topLeftCorner, double width, double height) {
this.topLeftCorner = topleftCorner;
this.width = width;
this.height = height;

public double getArea() {
return width*height;

public double getPerimeter () {
return 2.0* (width+height);

public double getWidth () {
return width;

public double getHeight () {
return height;

Let us look at the Rectangle class. It has three member variables. One is a
Point, which is the top left corner of the rectangle. The other two member variables
are the width and height of the rectangle. It has two constructors, one default construc-
tor, which constructs a unit square of which the top left corner is at the origin. The
second one allows the construction of any arbitrary rectangle.

Then there are two methods, getArea () and getPerimeter (), which have
the same signature as the methods in the base class. This is exactly how one overrides
a method. When one calls the getArea () method of a Rectangle, this method is
the one that is going to be called, and not the one in the base class. So, the base class
method has been overriden by the derived class method. Of course, the same applies to
the getPerimeter () method.

Note that the Rectangle class has also methods specific to itself, namely the
getHeight () and getWidth () methods.

Let us derive another class, the Circle from the Shape class as follows:

public class Circle extends Shape {
private Point center;



private double radius;

public Circle () {
center = new Point (0.0, 0.0);
radius = 1.0;

public Circle (Point center, double radius) {
this.center = center;
this.radius = radius;

public double getArea () {
return Math.PI*radius*radius;

public double getPerimeter () {
return 2.0*Math.PI*radius;

public double getRadius () {
return radius;

Note the similarities between Circle and Rectangle. Both have methods that
override the base class methods, and both have methods specific to themselves.

This is a good point to introduce abst ract classes, since the concept has already
been well-formed. Note that Shape is not a concrete class — an object of type Shape
does not really make much sense. A “shape” is really an abstraction we use to refer
to a lot of different things. We had to define dummy methods which returned puppet
values. That is really a nuisance. So, for the purpose of defining classes that are just for
the purpose of providing a base class for other classes, and never be instantiated itself,
Java provides the keyword abstract. Here is how we can rewrite the Shape class
taking advantage of the abstract keyword:

public abstract class Shape {

public abstract double getAreal();
public abstract double getPerimeter();

Now that looks much better. On the declaration line, the keyword abstract
informs the compiler that this is an abstract class — which means no objects of this
class can be instantiated, i.e., you can not use the new operator with this class directly.
This also tells the compiler that it is allright for this class to declare abst ract meth-
ods. In other words, any class which decalres abst ract methods must be declared
abstract itself.



8 Making use of Polymorphism

Polymorphism, as we have mentioned before, means taking different shapes. Here,
the abstract class Shape (no pun intended) has multiple subclasses, which can be
considered a different form of Shape.

The first step towards polymorphism is the ability of a base class variable to refer to
an object of a derived class. For example, the following is a valid, legal code fragment:

Shape shape;
shape = new Rectangle();

This is possible exactly because Rectangle is a subclass of Shape. Now, there
are things you can not do using the variable shape here. For example, you can not
call any of the methods specific to the Rectangle class. Explicitly, the following
code fragment will not compile:

int w = shape.getWidth(); // Wrong!

This is because the Shape class knows nothing about a getWidth () method.
What is does know about, however, is very useful, and forms the heart of polymor-
phism. When you call a method through a base class variable, and that method is
overriden in the actual object (which must be the case in an abstract base class) the
overriding method (i.e. the method of the derived class) will be called. Here is an
example demonstrating this:

public class TestingPolymorphism {
public static void main(String[] args) {
Shape shapel;
Shape shape2;

shapel = new Circle(new Point (1.0, 1.0), 5.0);

shape2 = new Rectangle (new Point (2.0, 2.0), 5.0, 4.0);
System.out.println ("Area of shapel: " + shapel.getAreal());
System.out.println ("Area of shape2: " + shape2.getAreal());

In this short program, and the accompanying three objects, we can see polymor-
phism at work. Both shapel and shape?2 are variables of type Shape. However,
they are assigned objects of different classes, which are both subclasses of Shape. At
the final step of the demonstration, the get Area () method is called for each object.
However, the getArea () method called depends on the actual object, for each object
the proper overriding method is called. So, we get the correct values for the area of a
circle and the area of a rectangle.

9 Casting with Classes

Casting, which we have already seen and used for basic types, works with classes as
well. You can always assign a subclass object to a parent class variable, and no casting
is required in that case.



Speaking more symbolically, it is always possible to assign an object to more gen-
eral classes, i.e. parent classes. No cast is needed in that case. The opposite is also
possible, you can also cast an object into a variable of a subclass. However, for that
to work, there are two conditions. First, an explicit cast is required. Second, the ob-
ject should really be of that type. If the cast does not make sense, it will produce an
exception. Here is a demonstration:

public class TestingPolymorphism {
public static void main(String[] args) {
Shape shapel;
Shape shape?2;

shapel = new Circle(new Point (1.0, 1.0), 5.0);

shape2 = new Rectangle(new Point (2.0, 2.0), 5.0, 4.0);
System.out.println ("Area of shapel: " + shapel.getAreal());
System.out.println ("Area of shape2: " + shape2.getAreal());
Circle circlel = (Circle) shapel;

Circle circle?2 (Circle) shape2;

The first cast is perfectly legal, since shapel does refer to a Circle, and it
is being cast to a Circle. But, the second cast is not legal. The actual object is
a Rectangle, and we are trying to cast it to a Circle. However, note that the
program will compile just fine — the error in this case is going to be a runtime error.
Run the program, and see what happens!

So, is there a way of testing for this runtime error? The answer is, of course, yes.
There is an operator for checking whether a cast will work or not. This operator is
instanceof. The form of the operator is as follows:

<variable> instanceof <class>

The result is a boolean. The result is t rue if and only if the object referenced
to by <variable> can be cast into a variable of type <class>

Perhaps it is best to see this by example. This final example demonstrates the use
of the instanceof operator:

public class TestingPolymorphism {

public static void main(String[] args) {
Shape shapel;

shapel = new Circle(new Point (1.0, 1.0), 5.0);
System.out.println ("Area of shapel: " + shapel.getAreal());
if (shapel instanceof Circle) {

Circle c = (Circle)shapel;
System.out.println("Radius: " + c.getRadius());



if (shapel instanceof Rectangle) {
Rectangle r = (Rectangle)shapel;
System.out.println("Width: " + r.getWidth());



