1 AWT - The Abstract Window Toolkit

At this point, we will deviate from the “most elegant” path of teaching Java. We will
be following the “most practical” path of learning for a while, before we come back to
the convetional order of things.

Rather than getting bored with object-oriented mumbo-jumbo at this point, we will
learn how to create simple graphical user interfaces (GUI) using the abstract window
toolkit (AWT) in Java. It should also provide a concrete example for class inheritance
which we will return to later.

The AWT is the class library which Java provides for the purpose of creating (al-
most) platform-independent user interfaces. It contains most of the “conventional”
GUI components, such as buttons, selection boxes, text input boxes and so on. We will
first see how to create a stand-alone Java application. Later, we will see how to embed
applications in a browser — in other words, how to create applets.

2 The Frame

The Java documentation defines a Frame as “a top level window with a title and win-
dow”. Frame resides in the package java.awt, like many of the other components
we will examine. It has four different constructors, only two of which we shall examine
now:

Frame
public Frame ()

Constructs a new instance of Frame that is initially
invisible. The title of the Frame is empty.
See Also:

Component.setSize (int, int), Component.setVisible (boolean)

Frame
public Frame (String title)

Constructs a new, initially invisible Frame object
with the specified title.

Parameters:
title - the title to be displayed in the frame’s border.
A null value is treated as an empty string, "".

See Also:
Component.setSize (int, int), Component.setVisible (boolean)

These definitions are directly from Java documentation. The mentioned “title” will
appear in the title bar of the newly created window. Note that, whether or not a title is
provided, the newly created F rame will be invisible.

In order to test our first Frame, we need to know a minimum of two more methods
of the Frame class, but we shall learn three just to add some fun. Here they are:

setVisible
public void setVisible (boolean b)

Shows or hides this component depending on
the value of parameter b.
Parameters:
b - If true, shows this component; otherwise,
hides this component.
Since:
JDK1.1
See Also:
isVisible ()

setSize

public void setSize(int width,
int height)

Resizes this component so that it has
width width and height.
Parameters:
width - The new width of this component in pixels.
height - The new height of this component in pixels.
Since:
JDK1.1
See Also:
getSize (), setBounds(int, int, int, int)

setLocation
public void setLocation (int x, int y)

Moves this component to a new location. The
top-left corner of the new location
is specified by the x and y parameters in the coordinate
space of this component’s parent.
Parameters:
x — The x-coordinate of the new location’s
top-left corner in the parent’s coordinate space.
y — The y-coordinate of the new location’s
top-left corner in the parent’s coordinate space.
Since:
JDK1.1
See Also:
getLocation (), setBounds(int, int, int, int)

Note that some of the words used in the documentation may not be familiar to you.
This is just fine, at least for now. Now we have enough information to display a window
of any size on our screen at any point. Here is the example code to do that:

import java.awt.*;
public class FrameTest {

public static void main (String[] args) {
Frame theFrame = new Frame ("This is our first frame!");
theFrame.setSize (300, 200);
theFrame.setLocation (200, 200);
theFrame.setVisible (true);

Type in this program, and execute it. If you did everything right, you should see
a small window somewhere around the top-left of your screen. Note that you can not
close the window. This is because we are not handling any events yet. So, you must
stop this program by using the IDE.

3 The Label

A Label is a rather dull user interface component. Its only use is to display a text
message, which can not be edited by the user. It may, however, be modified by the
program itself.

Label has exactly three constructors, as below:

Label
public Label ()

Constructs an empty label. The text of the label is the
empty string "".

Label
public Label (String text)
Constructs a new label with the specified string of text, left
Justified.
Parameters:
text - the string that the label presents. A null value
will be accepted without causing a NullPointerException
to be thrown.

Label

public Label (String text, int alignment)

Constructs a new label that presents the specified string of
text with the specified alignment. Possible values for
alignment are Label.LEFT, Label.RIGHT, and Label.CENTER.
Parameters:

text - the string that the label presents. A null value

will be accepted without causing a

NullPointerException to be thrown.

alignment - the alignment value.

So once we have created a Label, how to we tell Java to place that label within
something else (our F rame, for instance)? The answer to that is the following method:

add
public Component add(Component comp)

Adds the specified component to the end of this
container.
Parameters:
comp — the component to be added.
Returns:
the component argument.

Now, edit the code you already entered to look like the following:
import java.awt.*;

public class FrameTest ({

public static void main (String[] args) {
Frame theFrame = new Frame ("This is our first frame!");
theFrame.setSize (300, 200);
theFrame.setLocation (200, 200);

Label thelLabel = new Label ("Hello World!");
theFrame.add (theLabel) ;
theFrame.setVisible (true);

Note that we moved the setVisible () call down to the end. This is in order to
make sure Java knows what to display before the window is in fact displayed. Other-
wise, we would have to tell Java to update the view, but we don’t want to complicate
things right now.

Run the code. If everything went fine, you should see “Hello, World!” displayed
in the window. However, it might not be exactly where you expected it to be. We will
come back to that issue soon enough.

4 The Button

A Button is exactly what it sounds like, a button. It has two very simple constructors:

Button
public Button ()
Constructs a Button with no label.
Button
public Button (String label)

Constructs a Button with the specified label.
Parameters:
label - A string label for the button.

Just to give it a test drive, edit the code again, to look like this:
import java.awt.*;
public class FrameTest ({

public static void main (String[] args) {
Frame theFrame = new Frame ("This is our first frame!");
theFrame.setSize (300, 200);
theFrame.setLocation (200, 200);
Button theButton = new Button ("Press me!");
theFrame.add (theButton);
theFrame.setVisible (true);

When you run this, you will see that the whole F rame has become one huge button.
Do as the button says and push it a few times to see how it works. Then, stop the
program as before.

5 Layout Managers

When we add more than one component to a Frame (or any other Container, for
that matter) we need to tell Java how we want those components laid out. To do that,
we need to define the layout manager for the Frame. There are a few layout managers,
and we will examine one right now.

6 BorderLayout

BorderLayout is the default layout for a Frame. The Java documentation states
the following:

A border layout lays out a container, arranging and resizing
its components to fit in five regions: north, south, east, west,
and center. Each region is identified by a corresponding
constant: NORTH, SOUTH, EAST, WEST, and CENTER. When adding

a component to a container with a border layout, use one of
these five constants, for example:

Panel p = new Panel();
p.setLayout (new BorderLayout ());
p.add (new Button ("Okay"), BorderLayout.SOUTH);

As a convenience, BorderLayout interprets the absence of a
string specification the same as the constant CENTER:

Panel p2 = new Panel ();
p2.setlLayout (new BorderLayout ());
p2.add (new TextArea());

Now, modify the example program to test out BorderLayout.

7 The TextField

A TextField object is a text component that allows for the editing of a single line of
text.

|| Constructor | Explanation ||

TextField() Constructs a new text field.

TextField (int columns) Constructs a new empty text field with the
specified number of columns.

TextField (String text) Constructs a new text field initialized with
the specified text.

TextField (String text, Constructs a new text field initialized with

int columns) the specified text to be displayed, and wide
enough to hold the specified number of
columns.

Method

Explanation

int getColumns ()

Gets the number of columns in this text
field.

void setColumns (int
column)

Sets the number of columns in this text
field.

String getText ()

Gets the text that is presented by
this text component. (Inherited from

java.awt.TextComponent)

vold setText (String t)

Sets the text that is presented by this text
component to be the specified text.

char getEchoChar ()

Gets the character that is to be used for
echoing.

void setEchoChar (char
C)

Sets the echo character for this text field.

boolean echoCharIsSet ()

Indicates whether or not this text field has
a character set for echoing.

8 The TextArea

A TextArea object is a multi-line region that displays text. It can be set to allow
editing or to be read-only.

Constructor

| Explanation

TextArea ()

Constructs a new text area.

TextArea (int rows, int

columns)

Constructs a new empty text area with the
specified number of rows and columns.

TextArea (String text)

Constructs a new text area with the speci-
fied text.

TextArea (String text,
int rows, int columns)

Constructs a new text area with the speci-
fied text, and with the specified number of
rows and columns.

TextArea (String text,
int rows, int columns,
int scrollbars)

Constructs a new text area with the speci-
fied text, and with the rows, columns, and
scroll bar visibility as specified.

The scrollbars argument can be one of TextArea.SCROLLBARS_BOTH,

TextArea.SCROLLBARS_HORIZONTAL_ONLY,
TextArea.SCROLLBARS_NONE,
TextArea.SCROLLBARS_ VERTICAL_ONLY.

Method

| Explanation

void append(String str)

Appends the given text to the text area’s
current text.

int getColumns ()

Gets the number of columns.

void setColumns (int
columns)

Sets the number of columns.

int getRows ()

Gets the number of rows.

void setRows (int rows)

Sets the number of rows.

int
getScrollbarVisibility ()

Gets an enumerated value that indicates
which scroll bars the text area uses.

void insert (String str,
int pos)

Inserts the specified text at the specified
position in this text area.

public String getText ()

Gets the text that is presented by
this text component. (Inherited from
java.awt.TextComponent)

public void
setText (String t)

Sets the text that 1is presented
by this text component to be the
specified text. (Inherited from

java.awt.TextComponent)

9 The Checkbox

A check box is a graphical component that can be in either an “on” (t rue) or “off”
(false) state. Clicking on a check box changes its state from “on” to “off,” or from
“off” to ”on.”

Constructor

| Explanation

Checkbox ()

Creates a check box with no label.

Checkbox (String label)

Creates a check box with the specified la-
bel.

Checkbox (String label,
boolean state)

Creates a check box with the specified la-
bel and sets the specified state.

Checkbox (String label,
CheckboxGroup group,
boolean state)

Constructs a check box with the specified
label, set to the specified state, and in the
specified check box group.

Several check boxes can be grouped together under the control of a single object,
using the CheckboxGroup class. In a check box group, at most one button can be in
the “on” state at any given time. Clicking on a check box to turn it on forces any other

check box in the same group that is on into the “off” state.
The CheckboxGroup class is a simple class:

[Method

Explanation

String getLabel ()

Gets the label of this check box.

void setLabel (String
label)

boolean getState()

Determines whether this check box is in
the ”on” or ”off” state.

void setState (boolean
state)

Sets the state of this check box to the spec-
ified state.

CheckboxGroup Determines this check box’s group.
getCheckboxGroup ()
void Sets this check box’s group to be the spec-

setCheckboxGroup (Checkboxdfiedicheck box group

9)
|| Constructor | Explanation ||
CheckboxGroup () Creates a new instance of
CheckboxGroup.
|| Method | Explanation ||
Checkbox Gets the current choice from this check box
getSelectedCheckbox () group.
void Sets the currently selected check box in
setSelectedCheckbox (Checkithis group to be the specified check box.
box)

10 The Choice

The Choice class presents a pop-up menu of choices. The current choice is displayed

as the title of the menu.

[Constructor

Explanation |

[choice () | Creates a new choice menu. |
|| Method | Explanation ||

void add(String item) Adds an item to this Choice menu.

void addItem(String Adds an item to this Choice.

item)

String getItem(int Gets the string at the specified index in this

index) Choice menu.

int getItemCount () Returns the number of items in this Choice
menu.

int getSelectedIndex () Returns the index of the currently selected
item.

String Gets a representation of the current choice

getSelectedItem() as a string.

void insert (String Inserts the item into this choice at the spec-

item, int index) ified position.

void remove (int Removes an item from the choice menu at

position) the specified position.

void remove (String Remove the first occurrence of item from

item) the Choice menu.

void removeAll () Removes all items from the choice menu.

void select (int pos) Sets the selected item in this Choice menu
to be the item at the specified position.

void select (String str) Sets the selected item in this Choice menu
to be the item whose name is equal to the
specified string.

11 The List

The List component presents the user with a scrolling list of text items. The list can be
set up so that the user can choose either one item or multiple items.

Constructor

Explanation

List ()

Creates a new scrolling list.

List (int rows)

Creates a new scrolling list initialized with the
specified number of visible lines.

List (int rows, boolean Creates a new scrolling list initialized to display
multipleMode) the specified number of rows.
| Method | Explanation ||

volid add(String item)

Adds the specified item to the end of scrolling list.

void add(String item,
int index)

Adds the specified item to the the scrolling list at
the position indicated by the index.

void deselect (int
index)

Deselects the item at the specified index.

String getItem(int
index)

Gets the item associated with the specified index.

int getItemCount ()

Gets the number of items in the list.

String[] getItems()

Gets the items in the list.

int getRows ()

Get the number of visible lines in this list.

int getSelectedIndex ()

Gets the index of the selected item on the list.

int[]
getSelectedIndexes ()

Gets the selected indexes on the list.

String Get the selected item on this scrolling list.
getSelectedItem()
Stringl[] Get the selected items on this scrolling list.

getSelectedItems ()

boolean
isIndexSelected (int
index)

Determines if the specified item in this scrolling
list is selected.

boolean
isMultipleMode ()

Determines whether this list allows multiple se-
lections.

void remove (int
position)

Remove the item at the specified position from
this scrolling list.

void remove (String
item)

Removes the first occurrence of an item from the
list.

void removeAll ()

Removes all items from this list.

void replaceltem(String
newValue, int index)

Replaces the item at the specified index in the
scrolling list with the new string.

void select (int index)

Selects the item at the specified index in the
scrolling list.

void
setMultipleMode (boolean
b)

Sets the flag that determines whether this list al-
lows multiple selections.

