
1 What is a Class, Again?
After the introduction, we have delayed the discussion of classes up to this point. This
is because it is rather difficult to go into the details of defining classes without knowl-
edge of the basic programming structures in Java. You have also seen a solid example
of a class now, which is the String class. So, now you are ready to understand the
notion of a class.

2 A Circle Class
We will try to define a Circle class. It will be a class of circles in a plane. First,
it must have properties, which will be stored in what is called “data members”1 Now,
what properties would a circle have? In other words, what defines a circle? A little
thought reveals that the coordinates of the center, and the radius are all that are required
to define a circle. Thus, we begin the definition of the Circle class as follows:

public class Circle {
private double radius;
private double centerX;
private double centerY;

}

You do understand what double stands for, but private should be a mystery. It
is not a huge mystery, though. All it means is that only methods of the Circle class
are allowed to access those variables. We will see soon how that works, so don’t worry
about it too much right now.

The next thing we can do is define methods for our new Circle class. For exam-
ple, we may define a method for finding the are of our circle. Here is how that would
look:

public class Circle {
private double radius;
private double centerX;
private double centerY;

public double getArea() {
return Math.PI * radius * radius;

}
}

The public specifies that the getArea() method can be called externally, not
just from the Circle class. The double indicates that this method will return a
value of type double. This method does not take any arguments, and therefore the
pair of parentheses following the method name are empty.

We could add another method that moves our circle. That would make the class
look as follows:

public class Circle {
private double radius;

1“Data members” are also called “fields”, or sometimes even “properties”.

1



private double centerX;
private double centerY;

public double getArea() {
return Math.PI * radius * radius;

}

public void move(double moveX, double moveY) {
centerX += moveX;
centerY += moveY;

}

}

This time our method takes two arguments: moveX, which is of type double, and
moveY, which is of type double as well. The keyword void expresses the fact that
our method returns no value at all. What this method does is, just move the center of
the circle by the offsets given as parameters.

3 Constructors
Assuming we have a class definition, how do we create objects of this class? Some-
where else in the program (usually some other class), there will be a statement such
as:

Circle c;
c = new Circle();

Note that, just as with the String class, the declaration does not create the actual
object. The object itself must be created using the new operator. Note the pair of
parenthesis after the class name, as if we are calling a method. As a matter of fact, we
are calling a method. It is called the constructor. At this point, you should be saying
“But we never defined that method!”, and you are right. We did not. But, if you don’t
have a constructor, Java will create a default constructor for you, implicitly. What the
default constructor does is initialize all data members to zero. Let us write an explicit
constructor for this class:

public class Circle {
private double radius;
private double centerX;
private double centerY;

public Circle() {
radius = 1.0;
centerX = 0.0;
centerY = 0.0;

}

public double getArea() {
return Math.PI * radius * radius;

2



}

public void move(double moveX, double moveY) {
centerX += moveX;
centerY += moveY;

}

}

Note that the constructor does not have a return type, and always carries the same
name as the class. Our constructor, when called as new Circle() will create a unit
circle centered at the origin.

We can also have constructors that take arguments. It is also possible to have multi-
ple constructors, as long as they have different argument lists. Here is an example that
lets us create a circle of any size centered anywhere:

public class Circle {
private double radius;
private double centerX;
private double centerY;

public Circle() {
radius = 1.0;
centerX = 0.0;
centerY = 0.0;

}

public Circle(double cX, double cY, double r) {
centerX = cX;
centerY = cY;
radius = r;

}

public double getArea() {
return Math.PI * radius * radius;

}

public void move(double moveX, double moveY) {
centerX += moveX;
centerY += moveY;

}

}

The call to this new constructor would look like:

Circle c = new Circle(1.0, 2.0, 5.0);

3



4 The this Variable
In every method of an object, there is a variable that is defined by default: this. This
refers to the object whose method is being called. Whenever you refer to a data member
of a class, use of this is implied. For instance we could write the move() method
as follows:

public void move(double moveX, double moveY) {
this.centerX += moveX;
this.centerY += moveY;

}

5 The Finer Points of Parameters
Parameters to methods can be both basic types (int, char, double . . . ) or ob-
jects (String, Circle . . . ). However, the conventions used when passing them as
parameters are different.

When you pass a basic type as a parameter, a copy of it is passed to the method. Any
changes made within the method to the parameter will not affect the original variable.
This is known as passing by value.

In contrast, when you pass an object as a parameter, no copy is made. (Note that
arrays are, in fact, objects.) Instead a new reference which points to the same object
in memory, and passed to the method. So, any changes made to the object using the
reference will be made to the same object in memory, and changes will be permanent.
However, if you do operations that affect the reference, such as making it point to some
other object in memory, the original variable will not be affected.

6 final Parameters
If you want to make sure that an object passed to a method does not get modified within
that method (i.e. is used “read-only”), you prepend the word final to the beginning
of the parameter declaration. If you attempt to modify a parameter which is declared
as final within the method body, the compiler will complain.

7 static Variables
You can prepend the qualifier static to a variable declaration within a class. In that
case, that becomes a static variable, which means there is only one instance of that
variable for the class. In other words, a copy is not created per object.

8 static Methods
Prepending the qualifier static to a method will cause that to become a static method.
This means that the method can be called even when there are no objects of that class
present. A static method can be called by using the class name instead of an object ref-
erence. We have already done this in the case of the Math class. The main() method
is also static, since it is called by the Java Virtual Machine without ever creating an
instance of the class in question.

4



9 Packages in Java
Packages are very important and central to the way Java operates. They provide a
uniform way of naming and locating classes. Packages are also very closely intercon-
nected with the directory structure of classes on disk. We will see how all this works.

Up to now, all the classes we wrote were in the default package, which has no
name. Now, let us see how we can put, say, the geometry classes in a package. We will
call the package simply geometry.2 But, up to now everything we did was in two
dimensions. So it would be a good idea to to create a subpackage called twodim and
place our Circle, Point, and Line classes in it.

Let us start with the Point class. First, we need to specify within Point.java
the package name. This is done with the package statement, which must come before
anything else in a file. The file will look like the following:

package geometry.twodim;

public class Point {
// Class definition... Yada yada.
}

Note that package and subpackage names are separated by dots. (There can be as
many levels of packages as you like.) Now, we must also put this file in its right place.
To do that, we must create a directory called geometry. And then, inside it, create a
directory called twodim. And then, we must put Point.java in that directory.

This begs the question: Where do we create these directories? The answer is, in
a directory contained in your classpath. The classpath is read from the environment
variable CLASSPATH, or it can be specified on the command line when running Java.
with the -classpath �

classpath � option. This is in fact, how Java locates
your classes.

10 The Java Class Library Packages
Java provides a vast library of classes for different purposes. Below is a table of some
packages and their contents:

Package Name Content
java.lang Contains classes used in most programs.
java.io Classes used for input/output.
java.awt Contains GUI classes.

java.applet Classes required for writing applets.
java.util Contains “utility” classes.
java.sql Contains classes to handle database access.

In order to use classes that are in java.lang, you need not do anything; those
classes are available in your program automatically. However, in order to use classes
in other packages, you need to do one of two things:

2Note that this is not a very good package naming. Someone else might very well come up with the
same package name. Sun suggests that everyone name their packages by using their internet domain names
in reverse order. As such, we could name the geometry package tr.edu.boun.phys495.geometry.
But for now, let us stick with simpler names.

5



Use the full class name: The “full class name” is the name of a class containing the
full package name. For example, the full class name of the String class we have been
using is not String, but rather java.lang.String. So, if you need to use the
Applet class which is in java.applet, you need to specifyjava.applet.Applet.

Use the import statement: If you want to refer to classes with their short names,
you can use the import statement to tell the compiler to “import” classes into your
program. Note that import statements come after the package statement, but be-
fore anything else in a file. There are two ways of doing this:

1. import a single class:

import java.applet.Applet;
// This imports only the applet class.
// Now you can use it only by typing Applet.

2. import all classes in a package:

import java.applet.*;
// This imports all classes in java.applet.
// You can refer to any class in java.applet
// by its short name now.

6


