
1 Arrays in Java
Sometimes, you need to declare a whole group of variables, and you do not want to
name them one by one. For example, you may wish to store the first 1000 prime
numbers. Or, you may wish to store the temperature for each day in this year. You
certainly do not want to give a name to each varible. Instead, what you want to do is
declare an array.

The general form of a (one-dimensional) array declaration in Java is as follows:

<type name>[] <array variable name>;

Alternatively, you can use the form more common in other languages too (although
it is not reccomended):

<type name> <array variable name>[];

A few examples would be:

int[] phys495Grades;
float[] dailyExchangeRates;
char[] phys495LetterGrades;

Arrays are distinct from regular variables. An array variable is only a name for an
array of that particular type. The declaration does not create the array itself; it only
creates a name that can refer to an array.

The actual array needs to be created using the new operator. An example is proba-
bly in order:

int[] problemSet1Grades;

problemSet1Grades = new int[10];

The first statement declares the name problemSet1Grades as a name that can
refer to an array of integers. The second statement creates a new array of 10 integers
(why 10?) in memory, and makes the name problemSet1Grades a reference to
that new array.

Of course, these two can be combined in a single statement as follows:

int[] problemSet1Grades = new int[10];

2 Accessing Elements of an Array
How can one access individual variables in an array? This is done by following the
array name with a pair of square brackets containing the index of the element. Note
that array indices range from 0 to size of array minus one. So an array of 10 elements
will have indices 0 through 9.

1



3 Reusing Array Variables
As mentioned, an array variable is only a reference to the actual array in memory. As
such, one can create a new array, and link the array variable to the new array, while
discarding the old one. Here is an example:

int[] primeNumbers; // This only declares the name.

primeNumbers = new int[10]; // This creates a new array.

primeNumbers = new int[50]; // This discards the old array.

4 Initializing Arrays
If need be, you can also initialize the values in the array when creating the array. Here
is an example:

char[] phys495LetterGrades = {’A’, ’A’, ’B’, ’B’, ’C’,
’D’, ’F’, ’F’, ’F’, ’F’};

In this case, there is no need for a new operator, or the number of elements. These
are all obvious from the initalization. (Note that this is an array of type char, so the
initialization values are characters in single quotes.)

5 Finding out the Length of an Array
Since array variables are just references, it is usually necessary to find out the length
of an array. The length of an array can be accessed with <array name>.length.
Here is a short example that will print the contents of the above declared array:

char[] phys495LetterGrades = {’A’, ’A’, ’B’, ’B’, ’C’,
’D’, ’F’, ’F’, ’F’, ’F’};

for (int i=0; i < phys495LetterGrades.length; i++) {
System.out.println(phys495LetterGrades[i];

}

6 Multi-Dimensional Arrays
An array is analogous to a vector in mathematics. It has more than one component.
Similarly, a two-dimensional array is analogous to a matrix in mathematics. I will
only give an example here, since there aren’t many instances where one would use a
multi-dimensional array:

float[][] dailyTemperature = new float[12][31];

2



7 Introducing the String Class
We have already effectively used the String class in many cases. Any time you type
a string in double quotes in a Java program, you effectively use the String class.

However, there is more to the String class than that. The String class in Java
contains many methods that allows one to perform various operations on the string that
the String object contains.

8 Declaring String Variables
A string variable is declared just as one declares other variables. The general form
is simply:

String <string variable name>;

Just as in the case of arrays, when one declares a String variable (which is an
object, as opposed to a basic type), all that is created is a name. The declaration does
not create the object itself.

You can make the newly created String variable actually point to a String
object. One way of doing this is by assigning a literal string to the String object.
This can be done either in the declaration (initialization) or later (assignment). An
example for each is below:

String instructorName="Yasar Safkan";
String courseCode;

courseCode = "PHYS495";

9 String Concatenation
Two String objects can be concatenated by using the addition operator, “ � ”. You
have already seen its use. The “ � ” operator concatenates the two Strings it oper-
ates on, and produces a new String object as a result. The two operands remain
untouched. Here is a simple example:

String department="PHYS";
String code="495";
String lectureCode;

lectureCode = department + code;

The “+” operator works when one operand is a String and the other is a basic
type. The basic type will be automatically converted to a String and concatenated
with the other String.

Another possibility is to use the “+=” operator. It works exactly as you would
expect it to. The String on the right gets appended to the String on the left.

3



10 String Comparison
In order to compare basic types, you normally use the “==” operator. You can use the
“==” operator on two Strings but it will not quite work as you would expect it to.
The “==” operator will produce a true result if and only if the two String variables
refer to the same String in memory. It will produce a false result for any two
distinct String objects even if their contents are identical.

The proper way to compare two Strings for equality is to use the equals()
method of the String class.

How does one call a method of a class? The general form of doing this is:

<class variable name>.<method name>(<method arguments>)

You have already seen similar uses. For example, we used the square root method of
the Math class in previous excercises. That was a little different, however. We could
call the sqrt() method without ever having created a variable of the Math class.
That is because the sqrt() method is a static method of the Math class. A static
method can be called in the form <class name>.<method name>(<method
arguments>) without ever creating a variable of that class.

Coming back to the original discussion, here is an example of how one uses the
equals() method to compare two Strings, which you can type in and try out:

public class CompareString {
public static void main(String[] args) {

String string1="PHYS";
String string2="495";
String string3="PHYS495";
String string4;

string4 = string1 + string2;

System.out.println("string3 is: " + string3);
System.out.println("string4 is: " + string4);

if (string3 == string4) {
System.out.println("string3 == string4");

} else {
System.out.println("string3 != string4");

}

if (string3.equals(string4)) {
System.out.println("string3.equals(string4) == true");

} else {
System.out.println("string3.equals(string4) == false");

}
}

}

4



What do you think this program will produce as output when run? Here is the result
I got when I executed it:

string3 is: PHYS495
string4 is: PHYS495
string3 != string4
string3.equals(string4) == true

As you can see, although the strings string3 and string4 contain identical
strings, they are different string objects, and the “ ��� ” operator does not produce the
result that one expects. But, using equals() does produce the intended result.

Note that the equals()method does a case sensitive comparison. It will produce
a true result if and only if the two Strings are of the same length, and match
character-by-character.

If a case insensitive comparison is desired, one should use the equalsIgnoreCase()
method. While equalsIgnoreCase() does a case insensitive comparison, note
that it will only work properly for the English language without additional effort.

11 Testing the Beginning or End of a String
Sometimes one cares only about the beginning or end of a String. (Probably the
beginning, more often than not.) The String class provides two methods for each
purpose: The startsWith() and endsWith() methods.

Here is an example for startsWith():

String courseCode = "PHYS495";

if (courseCode.startsWith("PHYS")) {
System.out.println("This is a physics course.");

} else {
System.out.println("This is not a physics course.");

}

12 Ordering of Strings
The String class provides the compareTo() method which is used to compare
two Strings. string1.compareTo(string2) will return a positive value if
string1 is greater, i.e., string1 occurs later in alphabetical order. It will return
a negative value if string1 is smaller, i.e., occurs first in alphabetical order. The
method will return zero if and only if the two Strings being compared are equal.

13 Accessing Individual characters in a String
The charAt() method of the String class takes an integer value as an argument,
and returns a char. The char returned is the character which is at the position speci-

5



fied as the argument. An example is in order:

String courseCode = "PHYS495";

int stringLength = courseCode.length();
char letter;

for (int i=0; i < stringLength; i++) {
letter = courseCode.charAt(i);

System.out.println("Character at " + i + " is " + letter);
}

This code fragment will print out the characters in courseCode one by one. Note
that the length()method in this code fragment has been used to figure out the length
of the String. If the argument of charAt() is out of range, an exception will be
thrown (in other words, it is an error).

14 Searching for “Stuff” in a String
Very often, one needs to parse Strings in a program. To do that effectively, one needs
to locate where certain characters or Strings lie within a String.

The indexOf() method comes in two variants, one which takes a char as an
argument, and another which takes a String as an argument. Both forms return an
integer as a result, which is the index of the first occurrence of its argument within
the String. If the argument does not exist within the String, ��� is returned in both
cases.

There are two more versions of indexof(), which take two arguments. The first
argument is an integer, which tells the method at what position to start the search at.
The second argument is again, either the char or the String to be searched for.

A similar set of methods exist with the name lastIndexOf(), which return in
response the last index rather than the first index of the char or String being sought
in the String.

15 Extracting Substrings from a String
The substring() method of the String class takes two integer arguments. The
first argument is the index of the first character of the substring, and the second argu-
ment is the index of the last character of the substring plus one.

String courseCode = "PHYS495";

System.out.println(courseCode.substring(0, 4));
System.out.println(courseCode.substring(4, 7));

The code fragment above will produce the following output:

6



PHYS
495

16 More about Strings
The String class in Java is quite an extensive class, and contains more methods than
outlined here. The authoritative source for documentation is the one distributed by Sun
alongside the JDK. You should install and learn how to use the Javadoc. The String
class is only a single class out of the huge Java Class Library. It is not possible to
remember every method of every class in the Java Class Library. Instead, it is necessary
to learn where to find the documentation and how to use it.

7


