
1 What is Java?
Java is intended to be a platform-independent, object-oriented programming language.
The idea behind Java is to have a “standard” platform, where you write code just once,
and it can be run on any operating system with no modification. This is no simple task,
since there are different operating systems running on different hardware architectures.
Thus, the Java platform is a little more complicated than “native” programming lan-
guages.

1.1 The Java Compiler
Normally, you would expect a compiler (say, a C or Pascal compiler) to take source
code as input, and produce executable (well, at least linkable) object code as output.
The Java compiler does not do that. It takes Java source code as input (files with .java
extension) and produces Java object files (files with .class extension). Java object files
are in what is called bytecode. It can not be executed directly on any of the popular
operating systems. So how do you execute Java bytecode? That is the job of the Java
Virtual Machine.

1.2 The Java Virtual Machine
The Java Virtual Machine is a program that runs on top of the host operating system
and emulates a machine whose native code is Java bytecode. In other words, it takes
Java bytecode, and converts it into the language of the host operating system, and then
executes it.

In fact, this is exactly how the platform-independence of Java works. Someone
has already written the code to convert Java bytecode into the native language of all
popular operating systems and hardware architectures. So, that “translation” layer is
transparent for you, the application programmer.

1.3 Strenghts and Weaknesses of Java
The main and obvious strength of Java is its platform-independence. That alone makes
it a very useful tool for web applications. The syntax of the Java language is very
similar to that of C and C++, which makes the trasition very easy for people who are
familiar with the C/C++ syntax.

There are also additional advantages due to properties of the language. Java is not
a scripting language. It is also strongly typed, so at compile time your code is strictly
verified by the compiler. In essence, a Java program which does compile without errors
(There are no warnings in Java. It is an error, or it is not.) is more likely to run properly
than in any other progamming language (those that I know, at the least).

The main weakness of Java is also its platform-independence. While the intention is
to have a “write once, run everywhere” language, in practice Java sometimes becomes
a “write once, debug everywhere” language. This is because the Java Virtual Machine
relies on the host operating system for most input/output operations (graphical user
interface, networking) and each operating system has its own way of doing things and

1



its own set of bugs. So, while the code is portable in principle, it may need serious
testing on every platform it is intended to be run.

In addition, while the memory management of Java is much easier compared to
any conventional programming languages, it is a memory hog. When a Java Virtual
Machine is run, it will consume anywhere from 40MB to infinity of RAM. Moreover,
there is also a performance hit, since the code first needs to be converted to native
code. This performance hit is not as bad as it used to be, since these days most Java
Virtual Machines use JIT (Just In Time) compilation. This means that the Java bytecode
is converted to native code before execution, and then runs (mainly) as native code.
However, Java is still not a suitable platform for computation-intensive programming.

2 Introduction to Object-Oriented Programming
Java is by nature, an object-oriented language. It does not only allow object-oriented
programming, it in fact forces the programmer to use object-oriented techniques, as far
as a programming language can. This is in contrast with C++. C++ supports the use
of object-oriented code, but you can still write programs without using any classes or
objects.

2.1 What are Objects?
Generally speaking, everything can be thought of as an object. A person, a hat, a tree,
a room, a computer and an apple can all be thought of as objects.

Every object has its own set of properties, and actions it can perform or can be
performed on it. These would be the data members and methods of an object in object-
oriented speak.

Thinking of apples, there are many apples in existence. Some examples could
be myApple, yourApple, theRedApple. There are also computers in existence, for
example myComputer, oldComputer, and hisLaptop. These are all objects. But how
are the apples different than the computers? They belong to the same class of objects.
Computers belong to a different class of objects.

2.2 Object Oriented Programming
Object oriented programming is different from the more traditional, procedural pro-
gramming in the following sense: Although in both cases there are procedures and
there are “objects” (even structs in C can be considered to be objects), the “primary”
role is given to objects in object-oriented programming, while it is given to procedures
(or functions) in procedural programming.

Object oriented programming is not the solution to every problem. For instance, for
short, computational-only problems, the odds are using object-oriented methods will
cause more overhead than the help it will provide. The virtues of object orientation are
explicitly visible only in large projects, which are meant to be maintained over time.

2



3 The “Hello, world!” Program in Java
It is customary to start programming in any programming language with a “Hello,
world!” program, which does nothing except printing things out. It will demonstrate
the basic structure of Java programs.

public class HelloWorld {
public static void main(String[] args) {

System.out.println("Hello, world!");
}

}

In order to run this program, you need to type it exactly as shown, into a file called
“HelloWorld.java”. Java source code files always have the extension “.java”, and the
files compiled into bytecode have the extension “.class”. So, when this code is com-
piled, the compiler will generate a file called “HelloWorld.class”.

Normally, in Java, each class resides in a file that carries the same name as the class.
There will be one or more classes in every Java program. However, execution must
begin somewhere. The place program execution begins is the main method (methods
are functions belonging to a class in Java) of one class. One and only one class in the
whole program may contain a main method, and it must be given exactly as follows:

public static void main(String[] args) {
<method body>

}

The first line is the declaration line of the method, while the portion enclosed in
braces is the body of the method, containing statements telling the computer what to
do.

The part enclosing the main method is a class definition. It defines the class called
HelloWorld. Again, the portion contained in braces is the body of the class. For
now, you can consider these “magic incantations”, since we will first learn what we
can put inside the main method before going on to anything else.

Last, but not least, the line

System.out.println("Hello, world!");

tells the computer to print the string “Hello, world!” on a line by itself. Again, for
now consider this magic; if you need to print anything, you type a statement similar to
this. Another important point is that Java is case-sensitive, so you must type things in
the correct case.

4 Variable Types in Java
Java has a few basic variable types that are not objects. Note that Java is a strongly
typed language, and all variables must be declared with their proper types.

The integer and floating-point variable types in Java are given in the following two
tables:

3



Variable Type Size Minimum Value Maximum Value
byte 1 byte -128 127
short 2 bytes -32768 32767
int 4 bytes -2147483648 2147483647
long 8 bytes -9223372036854775808 9223372036854775807

Variable Type Size Minimum Value Maximum Value
float 4 byte -3.4E38 3.4E38
double 8 bytes -1.7E308 1.7E308

5 Variable Declarations
The general form of variable declaration in Java is:

<variable-type> <identifier> [= <initial value>];

Examples:

long bigInteger;
short myWeight;
int counter = 0;

Note that it is possible to declare and initialize more than one variable with a single
declaraton, using commas. Example:

float sideOne = 3.0, sideTwo = 4.0, sideThree = 5.0;

6 Integer and Floating-Point Literals
A literal is any value that is entered literally in the Java source code, such as 517, 1E12
or -2211. Any literal integer value is by default of type int. If you need to use a literal
value larger than the range allowed by the int data type, you need to append the letter
L to the end of the number. You can also use a lower case l, however it can easily be
mixed up with 1.

Any floating point literals are of type double by default. If you want the literal to
be of type float, you need to append the letter F to end of the number.

You can also use the exponential notation when using a floating point literal. An
example would be 6.02E23, which means

��� �����	�
����

.

7 Assignment and Arithmetic Calculations
The assignment operator in Java is the plain equals sign “=”. For example:

4



int numApples = 5;
int numOranges = 10;
int numFruit = 0;

numFruit = numApples + numOranges;

The last line assigns the sum of numApples and numOranges to numFruit, so the
value of numFruit will be 15. This also introduces the use of the plus sign “+” for
addition. The four basic arithmetic operators, “+”, “-”, “*”, “/” can be used in both
floating-point and integer calculations.

When the operands in an arithmetic calculation are of different types, one operand
is “promoted” to match the other. The promotion order is as follows:

byte � short � int � long � float � double

When both operands of the division operator “/” are integers, the result will also be
an integer. For example:

12/4 = 3
5/3 = 1
12/5 = 2

In integral division, it is an error to divide by zero, and an exception will be thrown.
Division by zero when the operands are floating point numbers will not result in an

error. However, the result will be infinity, and trying to print the value of the variable
will yield “Inf”. Infinity will act as one expects in calculations. When a calculation
does not have a defined result (such as 0/0 or infinity/infinity) the result will be “NaN”,
which stands for Not a Number.

8 Casting
When you need to explicitly change the type of an expression, you need to use explicit
casting. For example, look at the code fragment below:

double result;
int three = 3;
int two = 2;

result = 1.5 + three/two;

At the end of the calculation, result will have the value 2.5. This is because when
“three” is divided by two, it is done by integer division, and the result is 1. When you
add 1.5 and 1, 1 is promoted to a double (remember, the 1.5 is a double by default) and
added to 1.5, resulting in 2.5.

This, apparently is not what is intended in the code. We can change the behaviour
by explicitly casting the value of the variable three into a double as follows:

5



double result;
int three = 3;
int two = 2;

result = 1.5 + (double)three/two;

In this case, “three” is converted to a double, and then the division is performed.
Since now one operand is a double, the other is also promoted to a double, and at the
end, result will have the value 3.0, as one would expect reading the code.

The general form of casting is as follows:

(<type-name>)expression

9 More Operators
Apart from the well-known arithmetic operations, there is also the modulus operator,
%. The result is the remainder when the first operand is divided by the second operand.
For example:

9 % 2 = 1
11 % 3 = 2

Interestingly, the % operator works just as well for floating-point operands. The
result is again, the remainder when the first operand is divided by the second operand
an integral number of times. For example:

4.5 % 2.0 = 0.5
2.2 % 1.0 = 0.2

There is also another set of operators, which are of the “op=” type. For each op-
erator we have seen, there is a corresponding “op=” operator. Their meaning is best
explained by examples. In the examples below, each line with an “op=” operator is
equivalent to the preceding statement without an “op=” operator.

a = a + 5;
a += 5;

b = b / 2.0;
b /= 2.0;

c = c * 2;
c *= 2;

Finally, there are the increment and decrement operators, which have both a postfix
and prefix form. The increment operator is ��� and the decrement operator is ��� .
When placed before or after a variable, they increment or decrement the value of that
variable by 1 (1.0 if it is a floating point variable). The postfix version does the in-
crement/decrement operation after the current expression is fully evaluated, while the
prefix version does it after the current expression is evaluated.

6



10 Bitwise Operators
Bitwise operators operate on the binary digits of the numbers. The bitwise operators
are as follows:

Operator Operation�
AND�
OR�
NOT�
XOR

Java also has three bitwise-shift operators:

Operator Operation��� Shift left, fill with zeros��� Shift right, propagate sign bit����� Shift right, fill with zeros

11 More Variable Types
There are two more variable types in Java, “char” and “boolean”. The “char” type can
hold one unicode character, while the boolean variable type can take values of true and
false only. Here are examples of their use:

char myCharacter = ’Y’;
boolean isOpen = false;

12 An Example: Simple Calculation and Printing
public class AddAndPrint {

public static void main(String[] args) {
int a = 4;
int b = 5;

System.out.println("a = " + a);
System.out.println("b = " + b);
System.out.println("a+b = " + (a+b) + ".");

}
}

7


