1 Structures in C

Very often, when you need to store data, you have several pieces of related information
that could be stored together. The pedestrian way of doing it is creating a variable for
each value that needs to be stored, and try to process them all properly. However, more
often than not such techniques are totally inadequate for the task at hand.

Let us take an example that should be very familiar. Suppose we want to store
information about a student in the PHYS488.02 course. The first thing we need to
decide isthe information we need to store. Here is the list of information we want to
store:

e The first name of the student.

e The last name of the student.

e The BU ID number of the student.

e The two midterm grades of the student.

e The ten problem set grades of the student.
e The final grade of the student.

e The overall average of the student.

e The letter grade of the student.

Now, only if we had a data type that could store all this information in one piece,
we could do really cool stuff with it. Well, such a data type is obviously not built-in, but
we can make one for ourselves. In order to do this, we will need to define a struct
first, as follows:

struct student {
char first_name[40];
char last_name[40];
char 1d[15];
int midterm([2];
int homework[10];
int final;
float average;
char letter_grade[3];
bi

This is, for all practical purposes, the definition of a data type called “struct
student”. So, it should normally be placed directly within the file, above any func-
tions.

So, now that we have defined such a st ruct, how do we define a variable of this
type? The answer is, just like any other variable, as follows:

struct student ahmet;

Now, ahmet is a variable of type struct student, which holds all the infor-
mation above in it. But how can assign values to the different fields of this structure, or
read them out? For that purpose, the C language contains the dot operator “.”. Look at
the following example:

#include <stdio.h>
#include <string.h>

/* Definition of struct student should go here */

int main (void)

{
struct student ahmet;
int 1i;

strcpy (ahmet.first_name, "Ahmet");
strcpy (ahmet.last_name, "Muslim");
strcpy (ahmet.id, "9800820");

ahmet .midterm[0] = 88;

ahmet .midterm([1l] = -1;

for (i=0; i<10; i++4) {
ahmet .homework [i] = -1;

ahmet .homework[2] = 100;
ahmet .homework [3] = 98;

ahmet.final = -1;
ahmet .average = -1.0;

strcpy (ahmet.letter_grade, "NG");

Thus, the general way of accessing a field of a structure variable is:

<struct-variable>.<field-name>

2 Pointers to Structures

The real power of structures can only be realized by utilizing pointers to them. A
pointer to a structure is defined just as a pointer to any other type of variable is defined:

struct student *ptr;

There is one more operator you need to know before we can start having fun with
operators. That is the arrow “—>"" operator. Now, suppose you have a pointer to a
struct student, and you want to access the name field in there. How would you

do that? First, you have to dereference the pointer, and the use the “.” operator, as
follows:

(*ptr) .first_name

You need to use a pair of parentheses because the dot operator has greater priority
than the dereference operator. However, there is an equivalent (yet easier to type and
read) way of doing this using the arrow operator as follows:

ptr—->first_name

In other words, if you have a pointer rather than the structure itself, you use the
arrow operator rather than the dot operator. Simple as that.

3 Example: Complex Numbers

Without further ado, we jump directly to examples making use of structures. Here is
an example showing how to implement complex number operations using structures:

#include <stdio.h>
#include <math.h>

/* z

x + 1y */

struct complex {
float x;
float y;

}i

float length (struct complex *z);

float argument (struct complex *z);

void add(struct complex *result,
voild subtract (struct complex *result,
vold negate (struct complex *z);

int main (void)

{

struct complex a, b,

a.
a

b.
b

printf ("Length of %2.2f + %2.2fi
printf ("Length of %2.2f + %2.2fi

X

-y

X =

5%

12;

add (&c, &a, &b);

printf ("Sum of these numbers:
subtract (&d, &a, &b);

printf ("Difference of these numbers:

struct complex *a,
struct complex *a,

$2.2f + %$2.2fi\n",

$2.2f\n", a.x,
$2.2f\n", b.x,

struct complex *b);

a.y,
b.y,

c.X%,

struct complex *Db);

length(&a));
length (&b));

c.y)i

$2.2f + %2.2fi\n", d.x, d.y);

printf ("Argument of the difference: %2.3f\n", argument (&d));

return O;

float length(struct complex *z)
{

return sqgrt(z->x*z->x + z->y*z->y);

float argument (struct complex *z)

{

return atan2 (z->y, z->x);

vold add(struct complex *result, struct complex *a, struct complex *b)
{

result->x a->x + b->x;

result->y = a->y + b->y;

voild subtract (struct complex *result, struct complex *a, struct complex *Db)
{

result->x = a->x - b->x;

result->y a->y - b->y;

void negate(struct complex *z)

{
Z—=>X = —z—>X;
Z=>y = —zZ->Yy;

4 Exercise 1

Add “multiply” and “divide” functions to the above program.

5 Exercise 2

Write a similar program that defines a struct for 3-dimensional real vectors and defines
functions for the following operations: Addition, subtraction, multiplication with a
scalar, dot product, cross product.

