1 File I/0: Introduction

So far, we have written programs, but all of our input has been from standard input
(normally the keyboard) and all our output has been to the standard output (normally
the screen). Now it is time for us to learn how to read and write to files. In this way,
we can do more interesting things such as accessing disk files, and storing our output.

2 Streams

The file input and output operations in C are done through logical constructs that are
called streams. A stream is a unified logical description of any computer resource than
can input and/or output a series of bytes. In the most common form, a stream will be
an interface to a disk file, but the “file” could be the screen, the keyboard and the like
just as well.

There are two kinds of streams: Binary and text. Binary streams are raw streams
that can be used with any kind of data. On the other hand, in text strings some char-
acter conversions may happen in a text stream. The most notable conversion hap-
pens on DOS/Windows text files, where a newline character is converted to a carriage-
return/linefeed pair on output.

The C language also keeps a reference, called the current location with any open
stream. It stores basically where the next input or output operation access in the file.
So, in a file 100 bytes long, if the current location is 50, the next read operation will
return the 50th byte, and advance the location by one.

3 The FILE * Type

There is no way you can create a file object on your own. You have to call a library
function and ask it to open a file for you. The function will return you a pointer to the
newly opened file. To store that pointer, you need to declare a pointer that can point to
a file object. This type is FILE which is defined in stdio.h. Thus, if you want to
call your pointer my £i1e you can declare it as below:

FILE *myfile;

4 Opening a File

The function you will use to open a file is fopen (), the protoype of which is given
below:

FILE *fopen (const char *path, const char *mode);

The first argument is the pathname of the file you wish to open. If you specify a
bare filename, it will be assumed to be in the current working directory. Or, you can
specify a full pathname.

The mode argument specifies in what “mode” you wish to open the file. There are
12 related possibilities:

Mode | Meaning

r Open a text file for reading

w Create a text file for writing

a Append to a text file

b Open a binary file for reading

wb Create a binary file for writing

ab Append to a binary file

I+ Open a text file for read and write

w+ Create a text file for read and write

a+ Append or create a text file for read and write
r+b Opena binary file for read and write

w+b Create a binary file for read and write

a+b Append or create a binary file for read and write

For all “w” modes, the file is created if it does not exist, and is truncated to zero
length otherwise. For all “a” modes, the file will be created if it does not exist and the
current location is set to the end of the file.

This function returns a pointer to the opened file upon success. If the call fails, it
returns a NULL pointer.

5 Closing a File

Once you are done with a file, you should close it. This is done using the following
function:

int fclose(FILE *stream);

6 Reading Single Characters

Once a file is opened, you can use the following function to read single characters from
it:

int fgetc (FILE *stream);
The function fgetc () reads the next character from stream and returns it as an
unsigned char casttoan int, or EOF on end of file or error.
7 Writing Single Characters
The following function can be used to write a single character to a file:
int fputc(int ¢, FILE *stream);

The function fputc () writes the character c, cast to an unsigned char, to
stream. It returns the character written as an unsigned char cast to an int or
EOF on error.

8 Checking the Status of a File

First, you can check if the file has reached the end-of-file. This is done with the fol-
lowing function:

int feof(FILE *stream);

The function feof () tests the end-of-file indicator for the stream pointed to by
st ream, returning non-zero if it is set.

Second, you can check whether the stream has encountered any errors. This is done
with the following function:

int ferror(FILE *stream);

The function ferror tests the error indicator for the stream pointed to by st ream,
returning non-zero if it is set.

9 Reading and Writing Text
9.1 fputs() and fgets ()
These two functions are used to read and write strings.
int fputs(const char *s, FILE *stream);
The function fputs () writes the string s to stream.
char *fgets(char *s, int size, FILE *stream);

The function fgets () reads in at most one less than si ze characters from st ream
and stores them into the buffer pointed to by s. Reading stops after an EOF or a new-
line. If a newline is read, it is stored into the buffer. A 7 \0’ is stored after the last
character in the buffer.

9.2 fprintf () and fscanf ()

These two functions are identical to their counterparts that operate on the console and
keyboard (printf () and scanf ()) and differ only in that they operate on files
instead. They are as follows:

int fprintf(FILE *stream, const char *format, ...);

int fscanf(FILE *stream, const char *format, ...);

10 Exercises

10.1 Exercise 1

Write a program that will print the contents of a text file on the console. Do this reading
one character at a time.

10.2 Exercise 2

Repeat the above, but this time read the file line-by-line. Assume that no line exceeds
255 characters.

10.3 Exercise 3

Write a function that reads a file, and counts the number of “space” characters in it.

