
1 Sorting
In this lecture, instead of covering new subjects in C, we will stop and try to solidify our
current knowledge by studying a well-known problem in programming. The problem
is sorting. Sorting simply means to put the elements of a given set (which may contain
duplicates) into ascending or descending order. The problem we will attack now is the
problem of sorting a list of integers into ascending order. So, given the list:

45 67 32 14 2 88 141 13

We want the following result:

2 13 14 32 45 67 88 141

In order to achieve this result, we will write a function that has the following pro-
totype:

void sort(int *list, int length);

Note that the function does not return any value. The first argument is a pointer to
an integer which should point to an array. If you remember our discussion of pointers,
we can use this pointer to refer to any element of the array itself. One problem is that
the pointer is not sufficient to know the length of the array in C. Therefore, the second
argument should be used to pass the length of the array to the function. Here is an
example of how this function might be called:

int main(void)
{

int a[5] = {21, 3, 33, 143, 2};

sort(a, 5);

}

So, we pass the array a, and its length 5 to our function. There is one pitfall
here: You have been told that function parameters are always passed by value in C, and
therefore they may not be modified by the function being called. However, any changes
made to the array by the function here will be permanent. How does that happen? This
can happen when you pass pointers to a function. The pointer itself can not be modified
by the function, but any data that the pointer points to can actually be modified by the
function.

2 The Algorithm
There are many known algorithms for sorting (or, comparison sorting to be precise).
The one we will use here is one of the worst ways of doing this, called “selection sort”.
The algorithm goes like this:

1. Find the smallest member of the set.
2. Swap the smallest element with the first element.
3. If all elements are sorted, stop.
4. Ignoring all the sorted elements, go back to step 1.

This method is more easily demonstrated than written out, so do not be scared.

1



3 Writing the Code

3.1 Step One: Finding the Smallest Member of an Array
You can see that our simple algorithm contains a step which states “find the smallest
member of the set”. We will begin the solution of our problem by writing a function
that does just that and finds the smallest member of a given set. The prototype of the
function will be:

int index_of_smallest_element(int *set, int length);

The name of the function states that it returns the smallest element of the set. The
value the function returns should just be the index of the smallest element in the set,
and not the value of the element itself.

Just how do we do that? If you can not figure it out yourself, here is some informa-
tion: First, note that you can not decide that an element is the smallest element without
examining all of the elements in the array. So, it would seem that we need to loop over
all the elements in the array.

We will also need a variable to hold the index of the smallest element, and we will
eventually return the value of that variable. What will that variable’s initial value be?
I think it makes sense to set it to zero. In that way, we initially assume that the first
element of the array is the smallest element.

In this case, now we have to check all the other elements in the array. So, it would
make sense to start the loop variable from 1 rather than 0. Inside the loop, we need only
check whether the element at the current index is smaller than the value of the element
at our “assumed” index. If it is, then we just replace the “smallest element index” with
the current index (i.e. the value of the loop variable).

Once the loop is done, we can return the index of the smallest element easily. Once
you have written the function, make sure you test it to make sure it indeed returns the
index of the smallest element in the array.

3.2 Step Two: Sorting: Not just yet...
Now we are ready to do our sorting. Or are we? In order to sort, we need to be able to
ignore some starting elements in the array. For example, if we are looking for the third
smallest, and we have already placed the two smallest elements at the beginning of the
array, we want the smallest element whose index is greater than or equal to two. (Note
that indices start at zero.)

Our function therefore has to know how many elements it needs to skip. To do that,
we can add one more argument to our function making its prototype as follows:

int index_of_smallest_element(int *set, int length, int skip);

The argument skip here will tell our function how many elements to skip. In
this case, just two changes are required in our function: First, start the “search” with
element skip rather than zero, and start the loop at skip plus one rather than one.

3.3 Step Three: Finally, Sorting
Now, you should be ready to write the function that will do the actual sorting. You will
be calling the function you wrote in the last section. At one point you will obviously

2



need to swap two elements of the array. You have seen this before, but the way to do it
is to use an auxilliary variable:

swap = a[i];
a[i] = a[j];
a[j] = swap;

You should be able to figure this out on your own. And it should definitely not take
an hour!

4 Recursion
Recursion is a term you are bound to hear sooner or later in programming. It means
roughly to “happen again” (I am no English major!). Recursion in programming is the
name given to the technique where one or more functions repeatedly call each other or
themselves. Such functions are called “recursive” functions.

Obviously, a function can not keep calling itself infinitely many times; you will
run out of memory, time, or both. Normally, any recursive function has a well-defined
stopping point. You can see recursive definitions in mathematics as well:

�����������	��

�����

Here, ��� is defined recursively, as � times �	��
������ . Does it have a definite stopping
point? It sure does, and that point is defined by:

�������

The obvious way to find the factorial of a number in C is as below:

int factorial (int n)
{

int i;
int fac = 1;

for (i=2; i<=n; i++) {
fac *= i;

}

return fac;
}

This will obviously work fine. But, can we possibly write it recursively? The
answer is yes, of course. Here is a first attempt at writing it:

/* This will not work */

int factorial (int n)
{

return n*factorial(n-1);
}

3



As the comment states, this will not work. Why not? Because it does not have a
stopping point. The function will just keep calling itself forever. We need to supply the
stopping point. Where is that? If the function is called with 1, then we no more call the
function itself, but just return 1. Otherwise, recursion continues.

/* This will work */

int factorial (int n)
{

if (n == 1) {
return 1;

} else {
return n*factorial(n-1);

}

}

At this point, you should type this program in, and really understand it.

5 Exercise: Another Example of Recursion
Another thing with a recursive definition is the Fibonacci series (that should sound
familiar). The definition of the Fibonacci series is as below:

��� � �������! "�����$#
��� � �
��# � �

Now, you should be able to write a function that calculates the Fibonacci numbers
using recursion. Note that the code will look much simpler.

6 Pros and Cons of Recursion
In fact, these two examples of recursion are things that you should never do in practice.
The rule of thumb is that if something can be done using a loop, recursion is just
wasteful, and slow.

Why is recursion wasteful? Since every time the computer calls a function, is has
to remember where it was called from. So, it saves all local variables and execution
information, then calls the function. When the function returns, local variables are
restored and execution resumes. Each recursive call wastes some memory and causes
a function-calling overhead.

On the other hand, recursion can be a very powerful tool under the right conditions.
In fact, there are some situations where the only “proper” way to solve the problem is
recursive. Hopefully, we’ll get to see such situations eventually.

4



7 How Fast Will It Run?
Perhaps the most important point in deciding how good a particular algorithm is how
fast it actually runs. It is hard to find out how fast things will run by just looking at the
algorithm, but it is possible to find out how it will change with “size of input” or “term
number”, as the case may be.

Let us give an example of how things go by looking at the recursive factorial func-
tion implementation. Assume that one function call and execution takes % seconds to
execute. Until the factorial is calculated, the function will be called � times. Therefore,
the running time of the factorial function can be said to be % �&� . Thus, the time it takes
to calculate a factorial varies linearly with time.

How about the recursive Fibonacci implementation? Again, assume one call takes
% seconds to complete. If you did the exercise as intended, every call causes the
function itself to be called twice. Thus, the amount of time it will take to complete the
calculation will be approximately (assuming � is large) % ��' � . As you can see, this is
much slower as � increases.

Two more algrithms you should consider: Our sorting algorithm and the “for loop”
implementation of the Fibonacci function.

5


