1 Arrays

Sometimes, you want to define something that will hold more than one of a given type.
For example, if we wanted to store a list of integers, or a mathematical vector whose
components are doubles, we would need such a thing. Those are called arrays in C.

1.1 Declaring and Using Arrays

Here is the general form of an array declaration:
<type> <variable-name>[<size-of-array>];

Here the square brackets must be literally present, they do not denote “optional”.
Here are a few examples of array declarations:

int a[10];
float b[3];
double c[107];

For example, the declaration int a[10]; means that a is an array of 10 integers.
In other words, a can be used to store 10 different integers.

The question is, how do we refer to the individual elements of an array? The answer
is you refer to the element by its index, as in:

al[0] = 5;
10/3;

()]
)
I

So, in order to refer to an element of an array, you follow the array name by the
index of the element in square brackets. The index runs from zero to the size of the
array minus one. So, for example, if the array a is declared as int a[10], you can
referto a [0] througha[9].

What happens if you refer to an index that is larger than the size of the array (or
that is negative)? First, C will definitely not stop you from doing so at compile time.
Second, probably very bad things will happen at runtime. So, you should really know
what you are doing when you use arrays.

1.2 Initializing Arrays

Just like variables, arrays will also contain random values when they are declared. It is
possible to give arrays initial values in declaration as in the following example:

int a[3] = {2, 5, 3};

This declaration means that a [0] will have a value of 2, a [1] will have a value
of 5, and a [2] will have a value of 3. This general form is the same for other types of
arrays, except that the values must be of the correct type.

Note that the number of elements int the initialzer must match the declared size of
the array. In case you declare an array with an initializer, you do not have to specify
the length; the length will just be the number of elements in the initializer. So, the
following declaration is a valid one:

int al] = {2, 5, 3};

1.3 Multi-Dimensional Arrays

The arrays you have seen so far a known as “one-dimensional arrays” because they
have only one index. Multi-dimensional arrays are actually arrays of arrays, in other
words arrays whose elements are arrays, which can have further arrays as elements.
So, here is an example of a declaration of a two dimensional array:

float x[10][2071;

This declares a two-dimensional array which has a total of 200 elements. For ex-
ample, x [2] is an array itself which has 20 elements. So, x is an array of 10 elements,
and those elements are arrays of 20 elements themselves.

How do you initialize such an array? Here is an example (with fewer elements):

int a[3][2] = {{1, 2}, {5, 7}, {6, 9}};

So it is three arrays of two elements each. Can you omit the size in the declaration
in this case? Yes, but you can only omit the very first index. So, the following is
possible:

int all][2] = {{1, 2}, {5, 7}, {6, 9}};

If you think that is just too many braces to type, you can omit the inner braces as
follows:

int all (2] = {1, 2, 5, 7, 6, 9};

But, I think the initializer is more clear with the braces left in. It is a matter of
convenience, and normally you will not have too many multi dimesional array with
initializers in a program. Therefore, this should not be a problem.

2 Strings in C

The C language does not have a “string” type. However, you can clearly have string
constants in a program. You have already seen such constants, in expressions such as:

printf ("Please enter a number:");

So, any number of characters enclosed in double quotes is a string constant in C.
However, how do we define string variables if we do not have a string data type? Strings
in C are null-terminated arrays of chars. What does null terminated mean? There is
no way C can know the length of any given array, so any string (character array) must
be terminated with a character whose value is zero (null). So, if you want to be able to
store strings that are 20 characters long, you should declare a character array of length
21. So, you will be able to store 20-character strings in the following array:

char str[21];

How do you initialize such an array? There are a few ways. one of them is initial-
izing it using numbers as in the last section. Another is doing the following:

char str[3] = {"a’, 'b’, 0};

This makes st r a null terminated string containing “ab”. However, you will almost
never see such a thing in any program. What you will see is the following:

char str[3] = "ab";

This has the same effect as the previous declaration. But, it looks more readable.
Note again that we have defined an array of length 3, therefore we can store a string of
2 characters in length in it.

You can also leave the size unspecified, in which case the array will be just large
enough to store the string:

char str[] = "Phys 488.02: Programming with C";
It is possible to define a larger array to store a shorter string in it:
char str[256] = "Hello, world";

What can we do with such strings? Well, we can use them for a variety of purposes.
We can print them. We can get user input into them. And, we can perform operations
on them. Unfortunately, none of the operators work on strings in C. For that, we need
to use the C library functions.

3 String Library Functions
The functions that can be used to operate on strings are defined in the standard C library

header file st ring. h. So, if you use any of these functions in your program, you need
to #include <string.h> atthe top of your file.

3.1 String Copying

NAME

strcpy, strncpy - copy a string
SYNOPSIS

#include <string.h>

char *strcpy(char *dest, const char *src);

char *strncpy(char *dest, const char *src, size_t n);
DESCRIPTION

The strcpy() function copies the string pointed to be src
(including the terminating ‘\0’ character) to the array
pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive
the copy.

The strncpy() function 1is similar, except that not more
than n bytes of src are copied. Thus, if there is no null
byte among the first n bytes of src, the result wil not be
null-terminated.

RETURN

BUGS

In the case where the length of src is less than that of
n, the remainder of dest will be padded with nulls.

VALUE
The strcpy() and strncpy() functions return a pointer to
the destination string dest.

If the destination string of a strcpy() 1is not large
enough (that 1is, if the programmer was stupid/lazy, and
failed to check the size Dbefore copying) then anything
might happen. Overflowing fixed length strings is a
favourite cracker technique.

3.2 String Concatenation

NAME
strcat, strncat - concatenate two strings
SYNOPSIS
#include <string.h>
char *strcat (char *dest, const char *src);
char *strncat (char *dest, const char *src, size_t n);
DESCRIPTION
The strcat () function appends the src string to the dest
string overwriting the ‘\0’ character at the end of dest,
and then adds a terminating ‘\0’ character. The strings
may not overlap, and the dest string must have enough
space for the result.
The strncat() function 1is similar, except that only the
first n characters of src are appended to dest.
RETURN VALUE
The strcat () and strncat () functions return a pointer to

the resulting string dest.

3.3 Comparing Strings

NAME

strcmp, strncmp - compare two strings

SYNOPSIS

#include <string.h>
int strcmp (const char *sl, const char *s2);

int strncmp (const char *sl, const char *s2, size_t n);

DESCRIPTION

RETURN

The strcmp() function compares the two strings sl and s2.
It returns an integer less than, equal to, or greater than
zero 1f sl 1s found, respectively, to be less than, to
match, or be greater than s2.

The strncmp() function is similar, except it only compares
the first n characters of sl.

VALUE
The strcmp () and strncmp () functions return an integer
less than, equal to, or greater than zero if sl (or the

first n bytes thereof) is found, respectively, to be less
than, to match, or be greater than s2.

3.4 Finding the Length of a String

NAME
strlen - calculate the length of a string
SYNOPSIS
#include <string.h>
size_t strlen(const char *s);
DESCRIPTION
The strlen() function calculates the length of the string
s, not including the terminating ‘\0’ character.
RETURN VALUE
The strlen() function returns the number of characters in

S.

3.5 Reading Strings from the Keyboard

NAME
gets
SYNOPSIS
#include <stdio.h>
char *gets(char *s);
DESCRIPTION
gets () reads a line from stdin into the buffer pointed to
by s until either a terminating newline or EOF, which it
replaces with ’\0’. ©No check for buffer overrun 1is per-—
formed (see BUGS below) .
RETURN VALUE
gets () returns s on success, and NULL on error or when
end of file occurs while no characters have been read.
BUGS

Never use gets().

Because it is impossible to tell

with-

out knowing the data in advance how many characters gets()

will read, and because gets()
acters past the end of the buffer,
ous to use.

4 Examples
4.1 Example 1

#include <stdio.h>
#include <string.h>

int main (void)

{
char fname[80];
char lname[80];

printf ("Enter your first name:
gets (fname) ;

printf ("Enter your last name:
gets (lname) ;

printf ("Your name is:

") ;
")

%$s %$s\n", fname,

return 0;

4.2 Example 2

#include <stdio.h>
#include <string.h>

int main (void)
{
char passwordl[80];
char password2[80];
int done = 0;
while (!done) {
printf ("Please enter a password:
gets (passwordl) ;

")

printf ("Enter the password again:
gets (password2) ;

")

if (strcmp (passwordl, password2)) {
printf ("The passwords do not match.
} else {

done

1;

}

return 0;

It has been used to break computer

will continue to store char-

it is extremely danger-—
security.

lname) ;

Try again\n");

