
1 Loops
Loops are C constructs that are used to repeat the execution of a statement or a block
of code. There are three kinds of loops in C, we will see them all now.

1.1 The for Loop
The for loop is perhaps the most widely used and the most versatile of the three kinds
of loops in C. Its general form is the following:

for (<initializer>; <condition>; <increment>) {
<loop-body>;

}

You do not have to have the braces if all you want to repeat is a single statement.
However, I do reccomend using the braces in all cases, even in the case of a single
statement.

The initializer part of the for loop is executed only once when the execution of the
loop starts. After that, before the execution of the loop body, the condition is evaluated,
and the body is executed if it is true. Execution of the loop ends if the condition is false.
After every time the loop body is executed, the statement within the increment portion
of the for loop is executed before the condition is checked again. This obviously
continues as long as the condition evaluates to true.

As usual, here is a simple example demonstrating the use of the for loop:

#include <stdio.h>

int main(void) {
int i;

for(i=1; i <= 10; i=i+1) {
printf("%d ", i);

}

return 0;
}

If you type this in correctly and run, it will display the numbers from 1 to 10. This
is quite a simple example. Make sure you understand exactly what goes on in this code
before looking at the next example.

#include <stdio.h>

int main(void) {
double e=0.0;
double i;
double factorial=1.0;

for (i=1.0; i<=100.0; i=i+1.0) {
e+=1.0/factorial;
factorial = i*factorial;

1



}

printf("%1.15f\n", e);

return 0;

}

Now, examine the code carefully, and try to figure out what it calculates. Then,
type it in, and run it, and examine the result. If you still can not figure out what it does,
then you might need serious help with mathematics.

1.2 The while Loop
The second type of loop we are going to examine is the while loop. Its for is as
below:

while (<condition>) {
<loop-body>;

}

Once again, the braces are not mandatory for loop bodies consisting of a single
statement, but they are strongly reccomended. The while loop is quite simple; the
condition is evaluated, and if it is true the loop body is executed. If the condition
evaluates to false, the loop ends. Note that just like a for loop, it is possible for the
body of a while loop not to execute at all. In fact, a while loop is exactly equiavlent
to a for loop where the initializer and increment parts are left blank.

1.3 The do Loop
The do loop has the following general form:

do {
<loop-body>;

} while(<condition>);

It is very similar to the while loop except for the fact that the condition is evalu-
ated at the end of the loop rather than the beginning. This also means that a do loop is
executed at least once.

1.4 The break and continue Statements
The break and continue statements are important to control the execution of loops.
When a break statement is executed within a loop, execution of the innermost loop
(there can be multiple nested loops, obviously) ends, and execution continues with the
next statement following the loop. In other words, breakmeans “get out of this loop”.

The continue statement is different. It does not end the execution of the loop,
but it causes execution of the body of the loop to stop, and start at the next iteration. In
other words, continue means “jump to the end of this loop”.

Here is an example demonstrating both statements:

2



#include <stdio,h>

int main(void) {
int i=0;

while (i < 100) {
i=i+1;

if (i % 3) {
continue;

}

printf("%d\n", i);

if (i > 50) {
break;

}

}

break;
}

2 The switch Statement
You can think of the switch statement as sort of a “multi-if” statement. Here is the
general form:

switch (<integer-variable>) {
case <value-1>:
<statements>;

break;
case <value-2>:
<statements>;

break;
default:
<statements>;

break;
}

The switch statement takes an integer value to switch on. The body of the
switch statement contains any number of case labels with certain values. Once ex-
ecution reaches the switch statement, execution will jump to the case label which
matches the value of the switch variable. If there is no match, execution will jump to
the optional default statement. If there is no default statement, execution will jump
right over the switch statement as a whole.

As a matter of fact, you do not need to use the break statements. If you omit them,
execution will fall right through and execute code after the next case label. This is, in
fact a design error in C, so be careful not to lose any break statements.

Here is a function showing the use of the switch statement:

3



void print_month_name(int month) {
switch (month) {
case 1:

printf("January");
break;
case 2:

printf("February");
break;
case 3:

printf("March");
break;
case 4:

printf("April");
break;
case 5:

printf("May");
break;
case 6:

printf("June");
break;
case 7:

printf("July");
break;
case 8:

printf("August");
break;
case 9:

printf("September");
break;
case 10:

printf("October");
break;
case 11:

printf("November");
break;
case 12:

printf("December");
break;
default:

printf("What month??");
break;

}
}

3 Exercise
Write a C program that reads a double called x from the keyboard, calculate ��� , and
print it on the screen. (You should do this by modifying the example program in this
handout.)

4


