
CSE 505 Problem Set 3
Date: Thursday, October 28th, 2004

Due date: Thursday, November 4th, 2004

• Problem 1 : Gaussian Integrals
a. The “basic” Gaussian integral is:
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e−x2
dx

Show that the value of this integral is
√

π. This can be done as follows. Let
I =
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dx. Then,
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e−(x2+y2)dxdy

Consider this to be an integral over all x − y plane. Now, change to polar
coordinates, and do a suitable change of variables to reach the required result.

b. Show that
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c. Show that
∫ +∞

−∞

e−a(x−b)2dx =

√

π

a

d. Finally, show that
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Hint: Complete the square in the exponent.



• Problem 2
A continuous random variable x is said to be a Gaussian random variable if it

is distributed as:

fx(x0) =
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2πσ2
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· e
−
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2σ
2
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It can be shown that the expectation and variance of the random variable x in
this case are x and σ2

x, respectively. It can also be shown that this PDF is properly
normalized.

For this problem, assume that x is a zero-mean (x = 0) Gaussian random
variable with variance σ2 (σ2

x = σ2). Derive an expression for E[xn], the nth
moment, that is valid for all integer n ≥ 0.

Hint: Consider the two cases of n odd, and n even.

• Problem 3
To do this problem, you might find the results of problem 3 useful.
A central Chi-Square random variable y, with n degrees of freedom, is defined

as:

y = x2
1 + x2

2 + · · · + x2
n

where the xi’s are independent and identically distributed zero-mean Gaussian ran-
dom variables with variance σ2. Find the expectation and variance of y.


