

CSE 505 Final Examination

Date: Wednesday, January 5th, 2005

Duration: One Week

• Problem 1

A factory has a conveyor belt, on which wooden planks of different sizes travel with no gaps in between. The lengths of the planks are exponentially distributed, with parameter λ . (In other words, if we denote the length of a single plank with the random variable x , $f_x(x_0) = \lambda e^{-\lambda x_0}$.)

Given this information, the average length of the planks is $1/\lambda$.

Here is an interesting apparent paradox: Since the lengths are exponentially distributed, the arrivals of the endpoints (separation points) is a Poisson process. Suppose while the planks are passing, we stop the belt at a random time, say, by driving a knife into the plank currently in front of us. Now, the expectation value of the length until the end of the plank (from our knife) is $1/\lambda$. Now, if we consider the distance *since* the beginning of the plank to our knife, the expectation value of that is also $1/\lambda$. Therefore, the expectation value of the total length of the plank, which is the sum of these two lengths, is $2/\lambda$!

The question is this: The average length of the planks is $1/\lambda$, but when we catch one, we see the average length is $2/\lambda$! How does this happen? Which one is right? Or what is happening? Only explanations hitting the problem on the head will receive points.

• Problem 2

The state transition matrix for a discrete-state, discrete transition Markov process with two states is given as:

$$A = \begin{bmatrix} a & b \\ 1-a & 1-b \end{bmatrix}$$

In this notation, the state probability vector is denoted as a column vector (which is different than what we have in the book). Note that this is the most general case for a two-state system.

Since this A is the one-step transition matrix, the two, three, n-step transition matrices are A^2, A^3, A^n .

The most general state probability vector is:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where $x_1 + x_2 = 1$.

a. Calculate the two- and three- step state transition matrices.

b. By any means you can, calculate the elements of the matrix A^n as a function of n , for all $n > 0$.

c. Define $\vec{x}_n = A^n \vec{x}$. Calculate $\vec{x}_\infty = \lim_{n \rightarrow \infty} \vec{x}_n$, which is the limiting state probability vector.

d. Under what conditions does \vec{x}_∞ become independent of \vec{x} , the initial state probability vector?

e. How fast does \vec{x}_n converge to \vec{x}_∞ ? In other words, what is the dependence of convergence on the parameters a and b ?

• Problem 3

a. A discrete-state discrete-transition Markov process has three states. The state transition probabilities at each step from state i to state j are given by the state transition matrix p_{ij} . It is known that $p_{ij} = p_{ji} > 0$ for all pairs (i, j) . Find the limiting state probabilities P_i in terms of p_{ij} .

b. This time, consider a Markov process with N states, with the same property that $p_{ij} = p_{ji} > 0$. Find the limiting state probabilities P_i in terms of p_{ij} . (The result is very important for quantum statistical mechanics.)