1 Pointers

Finally, we arrive at an important stage in our study of the C programming language:
Pointers. Very briefly, a pointer is a variable that holds the memory address of “some-
thing else”. Exactly what kind of “something else” depends on the type of the pointer.
For instance, you can have pointers to ints, pointers to £1oats, and pointers to al-
most any kind of thing C can store in memory. Let us start with a simple example, and
then try to understand what happens in the program:

#include <stdio.h>

int main (void)
{
int *ptr;
int 1 = 54;

ptr = &i;
printf ("The value of i is: %d\n", *ptr);

return O;

The first new thing here is the declaration int *ptr;. This defines a pointer, the
name of which is pt r, which will be used to point to an integer. The * is the key
here, which makes pt r a pointer. This declaration line is read “integer pointer ptr’”.

The next interesting thing happens in the line ptr = &i;. You have seen the &
operator as a bitwise logical operator, but that is true only when it is used as a binary
operator. In its unary use (as it is used here) it is the “address of” operator. It returns
the memory address of whatever C object it precedes. Therefore, here, the memory
location of the variable 1 is stored in the pointer ptr.

Last, but not least, we have the line containing the print £. Here, the interesting
part is the use of *ptr for printing. Hopefully, at this point you are aware that the
address of the variable 1 is stored in pt r. Here, * is used as the “indirection operator”,
you can read it as “the value at”. In effect, ptr is the address, and *ptr is the int
value residing at that address, which in this program is obviously 54.

2 Pointer Arithmetic

Pointers are different from other numeric types because they actually reference memory
locations. This severely limits the operations that can be performed on pointers. You
can perform only the following operations on pointers:

e Add an integer to a pointer.
e Subtract an integer from a pointer.
e Increment a pointer using the increment (4-+) operator.

e Decrement a pointter using the decrement (——) operator.

All these amount to adding or subtracting an integer from the pointer. Let us look
at the case where you add one to a pointer. When you add one to a pointer, it ends
up pointing to the next object in memory. The computer calculates how many bytes
the pointer must advance in order to point to the next object from the base type of the
pointer. So, assuming 4-byte ints, if you add one to a pointer of type int *, the
actual value of the pointer will be increased by 4, and it will end up pointing to the next
int in memory past the one it was pointing to. If you add an integer other than one,
it will advance that many positions in memory. In case of subtractions, it will fall back
rather than advance.

3 The Connection between Arrays and Pointers

Arrays and pointers are closely related in C. In fact, the array variable (without an
index) is a pointer to the first element of the array. Look at the following example
code:

#include <stdio.h>

int main (void)
{
int af[4] = {5, 7, 9, 11};

int *b;

b = a;

*b = 100;
*(b+1) = 101;
*(b+2) = 102;
*(b+3) = 103;

printf ("$d %d %d %d\n", al[0], alll, al2], al3]);

return 0O;

Here, we define an array of four ints. As mentioned, the variable a is in fact a
pointer to the start of the array. Thus, by the assignment b = a; we put that address
into the pointer b. Now, we assign four different numbers to the array elements by
using dereferencing on b. Note how we add integers to b to refer to other elements of
the array other than the first one.

It may be surprising, but in general the following two forms are equivalent:

bn]
* (b+n)

This means that the following code is valid:

#include <stdio.h>

int main (void)

int af4] = {5, 7, 9, 11};

*a = 100;

*(a+l) = 101;
*(a+2) = 102;
*(a+3) = 103;

printf ("$d %d %d %d\n", al[0], alll, al2], al31);

return 0O;

Even more interestingly, this code is also valid:

#include <stdio.h>

int main (void)

{
int af[4] = {5, 7, 9, 11}%};
int *b;

b[0] = 100;
b[1] = 101;
b[2] = 102;
b[3] = 103;

printf("%d %d %d %d\n", al0], alll, al2], al3]);

return O;

So, in general, arrays and pointers are almost interchangeable. The only restriction
is on array variables. You can not modify the value of an array variable, it will always
point to the start of the array it was made for.

4 Multiple Indirection

In C, it is possible to have pointers to pointers, pointers to pointers to pointers and so
on. Let us see in an example how this happens:

#include <stdio.h>

int main (void)
{
int 1 = 10;
int *p;
int **ptop;

p = &ij
ptop = &p;
**ptop = 20;

printf ("sd\n", 1i);

return 0;

Here, p is a pointer to an integer, and ptop is a pointer to an integer pointer. First
we put the address of i in p. Then we put the address of p in pt op. And then, we use
ptop with double indirection to modify the value of i. It is hard to come up with a
good and simple example for the use of pointers to pointers, therefore you will have to
do with this one for now.

S Connection with Strings

Since strings are arrays in C, pointers are closely related to strings. Obviously, the type
of pointer that can be used with a string is a pointer to a character (char *). Almost
all of the string library functions in C take arguments of type char *.

One interesting point is that it is possible to initialize a char * with a string
constant as follows:

char *message = "Hello, world!";

When you do this, me ssage becomes a pointer to the string constant. You can use
this string as a read-only string. You can print it, copy it elsewhere, but you can not
write into this string, because in ANSI C it is forbidden to write into string constants.
(This was possible in what is called “traditional C”, but not any more.) If you want a
string you can write into, you will have to define an array.

6 An Implementation of strlen

Here is an example implementation of the st r1en function, whichI will callmystrlen:
int mystrlen (char *s)

{

int len=0;

while (*s++) {
len++;

return len;

