
1 C’s Operator Shorthands

1.1 The General Shorthand Forms
Operators are often used in programs in the following ways:

i = i + 1;
j = j * 2;
k = k - 5;

In C, there is a way for expressing such operations in a more shorthand way. The
following three operations are perfectly equivalent to the three operations above:

i += 1;
j *= 2;
k -= 5;

In other words, for all binary operators, the following two forms are equivalent:

a = a <op> b;
a <op> = b;

1.2 The Special Increment and Decrement Operators
Apart from the above shorthands, there are the special increment and decrement oper-
ators. If the one mostly used operation on a variable should be named, it is probably
adding one to that variable. For this purpose, C has the increment operator, ++. For
example,

i++;

increments the value of the variable i by one. This is called the post-increment
operator. The following, however, also increments the value of i by one:

++i;

In this form, ++ is called the pre-increment operator. In this bare use, both forms
are equivalent. The difference is apparent when the operators are used in the middle of
an expression. If the pre-increment form is used, the value of the variable is updated
before the expression is evaluated. But, if the post-increment form is used, the value of
the variable is updated only after the expression is fully evaluated.

There is a matching pair of pre-decrement and post-decrement operators, which
both use −−. They decrease the value of the variable they act on by one, and the
meaning of the pre- and post- forms are symmetric to that of the increment operator.

The following example demonstrates the difference between the pre- and post-
forms of these operators:

int a = 1, b, c;

b = a++;
c = ++a;

After this program fragment is executed, b will have the value 1, while c will have
the value 3.

1



2 Automatic Type Conversions
In many cases, an operator will act on two operands of different types, or a value of
one type will be assigned to a variable of a different type. In these cases, an automatic
type conversion will occur.

One case is when an integer type is converted to another integer type. If a smaller
type is being converted to a larger integer type, there is no problem, the variable will
keep its value without problems. However, when a longer integer type gets assigned to
a shorter integer type, if the value will not fit, the result is the value with the higher-
order bits lost. This is usually garbage, and should be carefully avoided.

When one floating-point type gets converted to another floating-point type, if the
converted type is larger, there is no problem. The other way around, there is loss of
precision, and possibly overflow, in which case the result will have the value of infinity.

When converting from an integer type to a floating-point type, there may loss of
precision. The other way around, the number loses its fractional part, and the result
may be garbage if it will not fit into the given variable.

In an assignment, the value will always be converted to the type of the variable.
One should really be careful about loss of precision and garbage production with such
automatic conversions.

For binary operators, there are standard promotion rules. First, all integer types
smaller than a regular int will be converted to ints. Then, if there is a mismacth
between the two operands, the shorter type will be “promoted” to the longer type and
the operation will be carried out. The folating-point types are considered to be “longer”
than the integers, so the promotion goes in the direction of the arrows below:

int → long → float → double → long double

3 Type Casts
Aside from automatic conversions, it is possible to change the type of an expression
momentarily during evaluation. In order to do that, you place the type name in a pair of
parentheses, and place that in front of the expression whose type you want to modify.
Here is an example:

int a, b;
float c;

a = 1;
b = 2;

c = a/b;

When this fragment is executed, the variable c will have the value of 0.000, prob-
ably not what you expected. This is because both operands are integers, in which case
integer division is carried out. If we want the “expected” answer, here is one solution:

int a, b;
float c;

a = 1;

2



b = 2;

c = (float)a/(float)b;

In this case, the variable c will have the value of 0.500, as you would expect. This
is because we converted both a and b to floats before performing the divison.

There are two points: First, the type cast does not change the type of the variable
here. The variables a and b are still integers. Second, we could have just used a cast on
one of the variables, since the other one would automatically be promoted according to
the given rules.

4 Types of Constants
Constants are the numbers that you type into a C program such as 12, −1222, or 124.03.
But what are the types of these numbers?

For integers, the default rule is that the type of a constant is the smallest type it will
fit in. But, it is possible to modify this default behavior by appending a letter to the end
of the number. The letter U appended to an integer constant will make the type of that
integer unsigned, while an L appended to the same will make it a long.

For floating-point types the rule is different. Anything you type which contains a
decimal point is a double by default. Again, it is possible to modify this behavior by
appending letters to the end of the numeric constant. In this case, the letter F causes
the constant to be a float, while an L makes the floating point constant a long
double.

5 The Conditional Operator
There is one ternary (three-argument) operator in C, which is the conditional (?) op-
erator. The general form of this operator is as below:

<condition> ? <value-if-true> : <value-if-false>

If the condition is true, the value of the expression is the first value after the oper-
ator. If the condition is false, the value is the second value after the operator. In other
words, the following two program fragments are equivalent:

if (a > 0) {
b = 5;

} else {
b = 7;

}

b = a > 0 ? 5 : 7;

This operator is normally used as a shorthand notation in a single line. It should
not be abused, since expressions containing the conditional operator are hard to follow.

3


