1 Very Short Introduction to C

Since it is my experience that long introductions do more evil than good when the
audience has no idea about the subject matter, this introduction will be very brief, and
to the point.

C is a programming language. It has been written by programers, and for program-
mers. It is considered to be a low-level language. C provides maximum flexibility,
computing power, low-level control at the expense of hard-to-track bugs, long devel-
opment times and hard-to-manage code.

In this course we will attempt to learn the syntax and basics of C, along with simple
algorithmic and mathematical applications.

2 The C “Hello, world!” Program

It has been customary for some time to start programming languages with a program
that will output the sentence ‘“Hello, world!” on the screen. We will not break this rule.
Here is the source code' for our “Hello, world!” program in C:

/* The "Hello, world!" program. */
#include <stdio.h>

int main (void)
{
printf ("Hello, world!");

If you type this program into the computer, compile it, and run it, it should print
Hello, world! on the screen.
Here is a brief line-by-line explanation of the code:

e /* The "Hello, world!" program. */

This is a comment (comments are delimited using /* */ in C) and has no actual
effect on the program itself.

e #include <stdio.h>

This is what is called a preprocessor directive. What it does in effect is to in-
sert the standard header file stdio.h at that position into the code. This file,
stdio.h contains the definitions of standard input/output functions that are
part of the C standard library. Here this is required in order to be able to use the
printf () function in our program.

e int main (void)

This is what is called a function declaration. All C programs consist of one or
more functions. This line declares a function with the name main, which is a
special function name; it is where the execution of a program will start.

'Don’t worry if you do not know what “source code” and other terms we use here mean right now.

 {
This denotes the start of the function body. All code blocks in C are delimited by
a pair of braces.

e printf("Hello, world!");

This is a statement. What the statement says is to call the printf () C
library function with the argument * ‘Hello, world!’ ‘. Inits simplestuse,
printf () prints its argument on the screen.

°}

This denotes the end of the function body.

3 The C Language Syntax

The main parts of a C program are functions. Any C program consists of one or more
functions. The general form of a function definition is given below:

<return-type> <function-name> (<argument list>)

{
<function body>

In trying to explain what a function is, I will try to draw from your mathematical
knowledge. A C function is similar to a mathematical function in that it takes a number
of arguments, and produces a result. In mathematical functions, more often than not,
the arguments and results are mathematical numbers. However, in C, both the argu-
ments and the return value of a function can be a multitude of data types, so they must
be given in the function definition.

So, if we go back to our main (), it reads:

int main (void)

The keyword int here means infeger, and denotes an integer data type usually 4
bytes long. Why does main () return an integer? This might be a bit too deep to
discuss now, but by the “new” C standards, the return value of main () must be int.
It should be sufficient to say that the value will be returned to the underlying operating
system when the program ends.

Now, you can see that where the argument list should be, we have but one word:
void. This is a C keyword denoting a void data type. In other words, here it stands to
say that the function main () takes no arguments at all.

At this point we know (more or less) what goes into and out of a function. However,
we do not know what a function contains. A function consists of statements. A state-
ment is basically an instruction to the computer to do something. It can be a function
call (obviously, functions can and do call other functions), an assignment, a variable
declaration and some other things. One key point is that all statements in C must end
with a semicolon (’;’). A newline character does not act as a delimiter in C. Extra
whitespace (spaces, tab characters, newlines) are usually ignored by the C compiler.
The only places you can not put extra spaces is in the middle of identifiers (variable
names, function names) and C keywords.

In our first example program, the line:

printf ("Hello, world!");

is a statement. It is a function call, calling the standard C library function printf ()
in order to print out a string.

One mystery remains before we can go on: How do we return values from a func-
tion? The C keyword return, followed by an expression is used to return a value
from a function. Note that the use of return is twofold, first it determines what value
will be returned to the calling function, and second it ends the execution of the func-
tion at that point. In other words, once a return statement is executed, any following
statements within that function will not be executed, and execution will be returned to
the calling function.

Now, we can add a return statement to our example program as below:

/* The "Hello, world!" program. */
#include <stdio.h>

int main (void)

{
printf ("Hello, world!");

return 0;

This will make the program return the value O to the operating system, which means
“everything worked just fine”” by convention. Other return values from main () indi-
cate that some sort of problem was encountered, again, by convention.

4 Variable Types in C

C is a strongly typed language, that is, all variables must be properly declared before
they can be used. However, there is much room for confusion in variable types in C,
since the C standard leaves a lot to the compiler implementation. In any case, we will
try to cover the basic variable types now.

4.1 Integer Variable Types

There are four types of integer variables in C. These are char, short int, int,
long int.

e char

The char type is a special type, which is used to hold 8-bit characters. (As
a side note, when you want to type character constants in your code, they are
typed in single quotes, such as ’ A’.) Thus, the size of a char variable is one
byte. However, you can use a variable of type char as a small integer as well.

e short int

The short int type is typically shorter than an int and longer than a char.
These days in common compilers short ints are 2 bytes long. Note that it is
possible to use just short instead of short int.

e int

The int type is the “main” integer type, and normally is as large as a register of
the CPU it is running on. In the Intel architecture, ints are 4 bytes long.

e long int

The long int type is supposed to be an integer type longer than the int.
However, in my experience, in most compilers it is just as long as int, that is, 4
bytes long. Note that it is possible to use 1ong instead of long int.

In addition to all these integer data types, there is also the matter of signed vs.
unsigned integers. If you want to use negative numbers as well as positive numbers,
you need to reserve one bit for the sign of the number. But, if you wish to denote only
positive numbers, you can use the whole range for positive numbers. In C, by default,
short, int, and long are signed. If you wish to use them as unsigned variables,
you need to prepend unsigned to the variable type; for instance unsigned int.
There also exists a signed keyword, but normally is not used for these types since it
is the default.

However, the char is more problematic, its default behavior is left to the compiler.
So, if you want to be sure of what you are doing (and will actually use a char as a
small integer) you had better specify one of signed or unsigned.

So what are the actual ranges for these variables? Once you know the size of the
variable in bytes, it is simple to figure out. Given the number of bytes of the variable is
n the ranges of a signed and unsigned variable are as follows:

| Type | Min | Max |
Unsigned 0 28 1
Signed —28n=T [98n=1_ 7

So, for example, for a two-byte, signed short int, the range is —32768 to
32767.

4.2 Floating-Point Variable Types

Floating-point variables can hold numbers that have fractional values. There are two
floating-point types in C, f£1oat and double. They can both hold rather large values,
but double provides twice the precision that a £1oat provides.

5 Declaring Variables

As mentioned earlier, since C is a strongly typed language, all variables must be prop-
erly declared before they can be used. The general form of a variable declaration is as
follows:

<type> <variable-name>[= <initial-value>];

As you can see, it is optionally possible to assign an initial value to the variable
being declared. So, for example, if we want to declare the int variable i with an
initial value of 10, this would be our declaration:

int 1 = 10;
It is also possible to declare multiple variables of the same type in a single declara-
tion as follows:

float x=1.0, y=2.0, z;

Note that here we have chosen not to initialize z to any value. The value of an
uninitialized variable will be undefined (i.e., random) so it is not a good idea to use
uninitialized variables without properly giving them a value first.

Where can declarations go? In C, declarations can only be present at the beginning
of a block of code (a block of code is simply one or more statements enclosed in curly
braces).

6 Another Example Program
Here is another example program that makes use of things we have seen so far:

/* Example two: Variables, functions, declarations... */
#include <stdio.h>

int multiply(int a, int b)
{

int c¢;
c = a*b;

return c;

int main (void)

{

int product;

product = multiply (4, 5);
printf ("The product is: %d\n", product);

return 0;

Here you can see variables, declarations and functions in action. There are four
new things here. One is assignment:

c = a*b;

In an assignment, the right hand side gets calculated, and the result goes into the
variable on the left. The second is also here, and it is multiplication. We will come
back to operations soon enough, but for now, this is how two things are multiplied by
each other.

The third and fourth things are in this line:

printf ("The product is: %d\n", product);

Firstly this is a more “advanced” use of print f (). The firstargumentto print f ()
is the format string. The format string, in addition to normal characters, can contain
a number of directives. Here, $d is a directive, saying “replace this with an integer”.
But what integer? That is given as the second argument to printf () — here, it is the
variable product.

The last thing of note here is the “\n” within the string. It is what is called an
“escape sequence”’, which corresponds to a newline character. By putting a newline
character there, we make sure anything else printed by the program will go onto a new
line, and not the same line as this one.

